

State Civil Aviation Agency of the Kyrgyz Republic

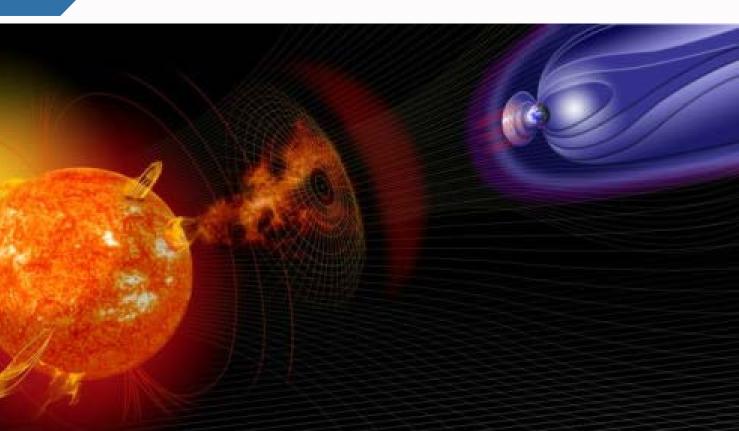
SPACE WEATHER & AVIATION

Natalia Kim, MET inspector CAA of the Kyrgyz Republic n.kim@caa.kg

Content

01	What is Space Weather?
02	Sun processes
03	Space weather phenomena
04	Space weather impacts on aviation
05	Space weather centres
06	Space weather advisories
07	Space weather Mitigation

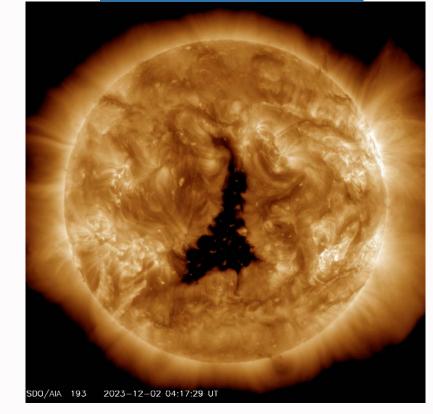
What is Space Weather?


World Meteorological Organization (WMO): "The physical and phenomenological state of the natural space environment, including the Sun and the interplanetary and planetary environments."

Aviation:

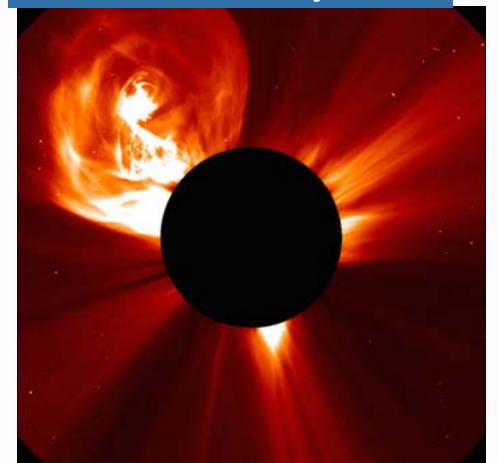
space weather events occur when the Sun causes disruptions to aviation communications, navigation and surveillance systems, and elevates radiation dose levels at flight altitudes

Particular types of disturbances: solar radiation, geomagnetic and ionospheric storms, solar flares and GCR



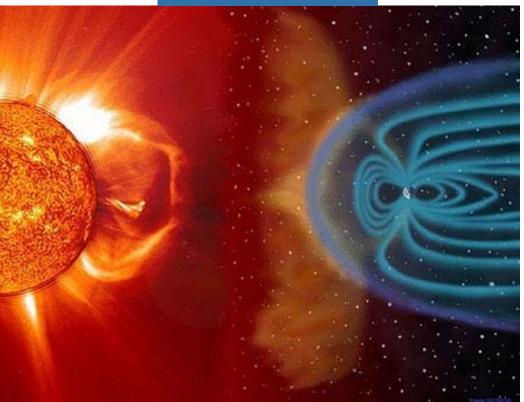
Sunspots

Coronal hole



Solar flare

Sun's



Coronal mass ejection

Solar wind

Galactic cosmic rays

COR RADIATION

CTIC RADIATION

SUPERNOVA

Geomagnetic Storms

Strong disturbances in the Earth's (geo) magnetic field

The duration varies from a few hours to a few days

The strongest storms are caused by CMEs

Impact HF, VHF, GNSS

Ionospheric Storms

The strongest storms occur at the rate of approximately 4 per 11-year cycle

The result of adding energy to the weakly ionized plasma which is the ionosphere

In most cases occur in tandem with geomagnetic storms The primary driver for impacts to HF and the GNSS

Solar Flare Radio Blackouts

A dayside impact

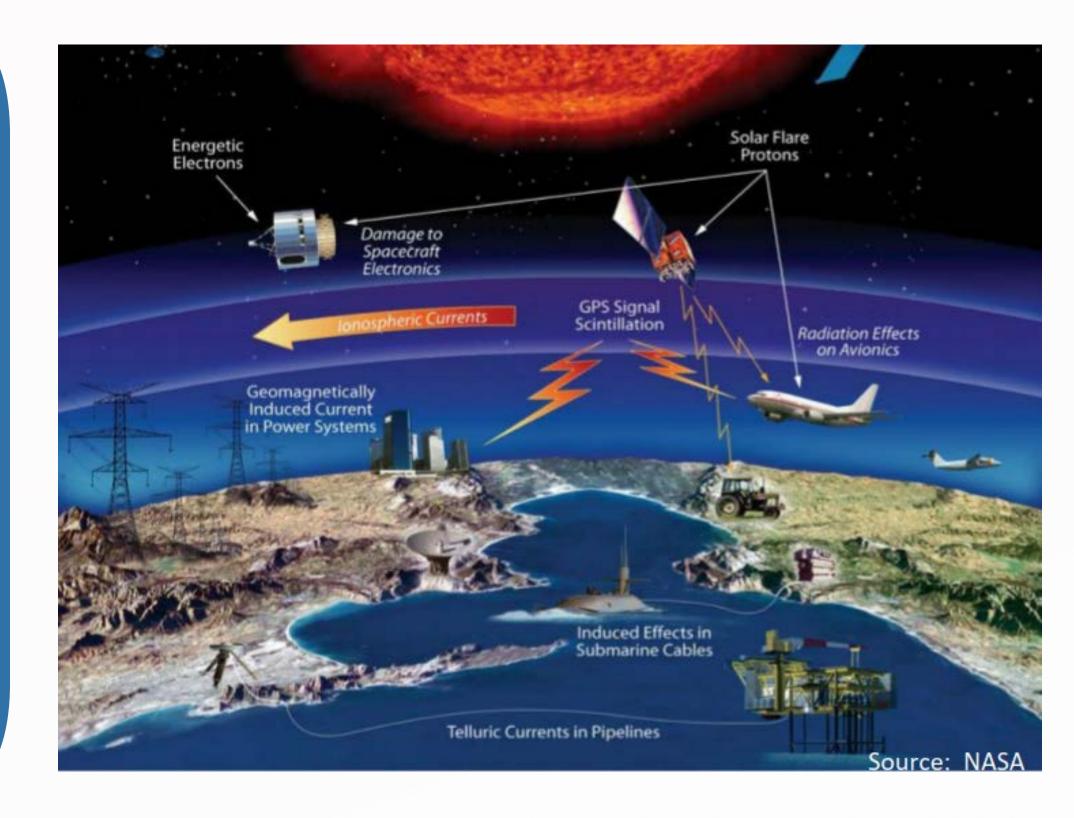
10-20 episodes of solar flare radio blackout during solar maximum years The worst solar flare radio blackouts occur at a rate of 1-2 per 11-year cycle

 Can eliminate or degrade HF, both voice and data link.
 Affect HF and UHF radars

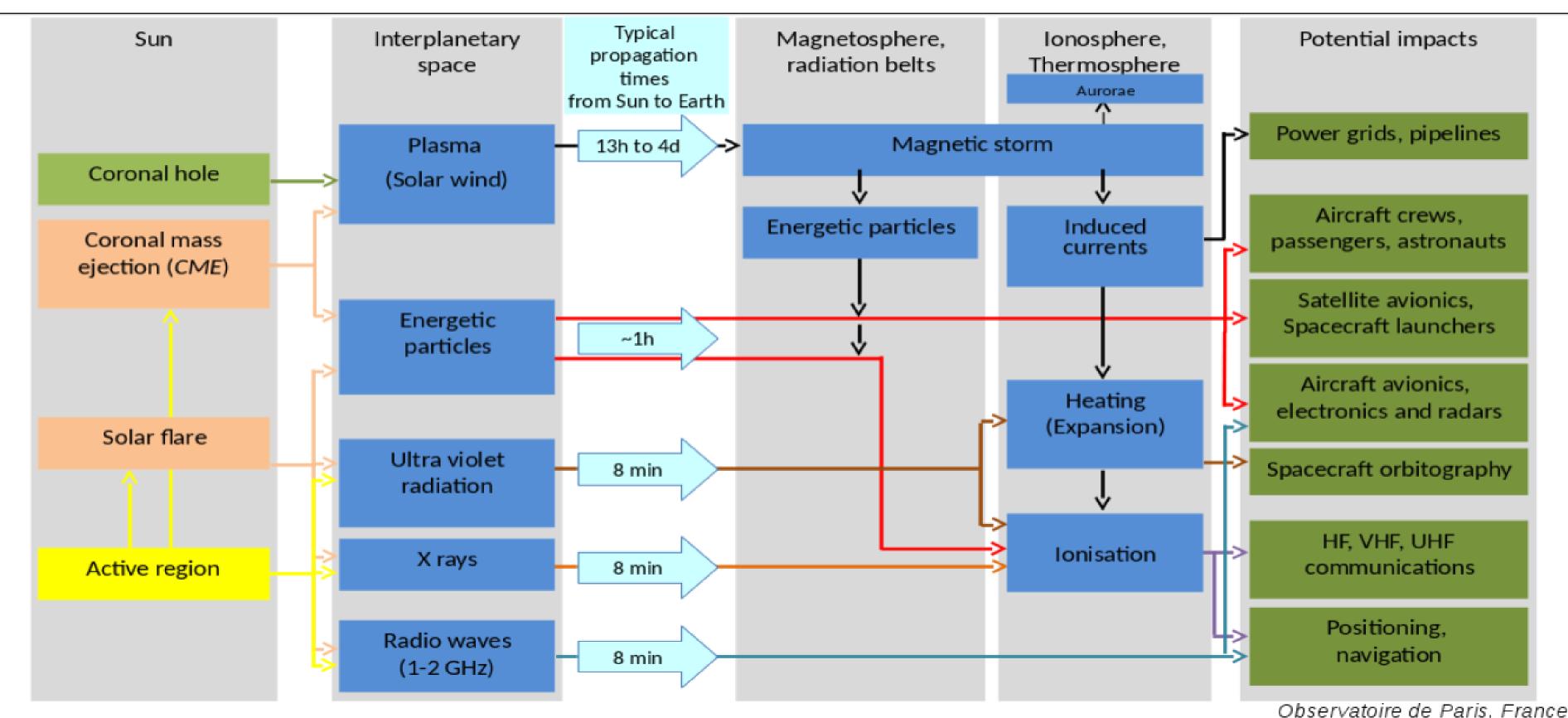
Solar Radiation Storms

Occur when charged particles engulf the Earth with additional radiation

High altitude, polar and near-polar flights are the most exposed


latitudes

Can last up to a week


1) Degrade HF at high 2) Elevate the radiation dose experienced in flight

Space Weather Impacts on Aviation

- 1) erratic, degraded, or unavailable HF;
- 2) data and voice dropouts on SATCOM;
- 3) degraded performance of navigation and surveillance that rely on GNSS;
- 4) reboots and anomalies of on-board electronics;
- 5) radiation exposure by aircrew and passengers

<u>Illustration of Sun-Earth relations</u>: colours in the first column show phenomena varying according to different timescales : coronal holes are stable for several solar rotations (27 days), active regions vary on timescales comparable to the Sun rotation period, while solar flares and mass ejections are explosive phenomena. All of these phenomena vary according to the 11 year activity cycle.

Space Weather Centers

US Space Weather Prediction Center (SWPC)

SWPC - USA

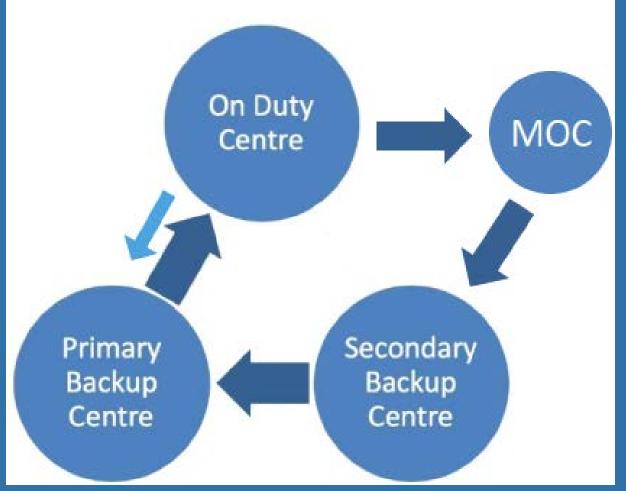
ACFJ - Australia, Canada, France, Japan

PECASUS - Finland, Belgium, UK, Austria, Germany, Italy, Netherlands, Poland, Cyprus

CRC – Russia, China

South Africa (Regional Centre)

European


PECASUS

VIII ALIIII

Australia, Canada, France, Japan (ACFJ)

4-centre model

Handover Timetable, years 2021-2023

Month	Date	On Duty Centre	Primary Backup Centre	Secondary Backup Centre	Maintenance and Observation Centre	
May 2022	03	ACFJ	PECASUS	SWPC	CRC	
	17	PECASUS	SWPC	CRC	ACFJ	
	31	SWPC	CRC	ACFJ	PECASUS	
June	14	CRC	ACFJ	PECASUS	SWPC	
	28	ACFJ	PECASUS	SWPC	CRC	
July	12	PECASUS	SWPC	CRC	ACFJ	
	26	SWPC	CRC	ACFJ	PECASUS	
Aug	09	CRC	ACFJ	PECASUS	SWPC	
	23	ACFJ	PECASUS	SWPC	CRC	
Sep	06	PECASUS	SWPC	CRC	ACFJ	
	20	SWPC	CRC	ACFJ	PECASUS	
Oct	04	CRC	ACFJ**	PECASUS**	SWPC	
	18	ACFJ	PECASUS**	SWPC**	CRC	
Nov	01	PECASUS	SWPC**	CRC**	ACFJ	
	15	SWPC	CRC**	ACFJ**	PECASUS	
	29	CRC	ACFJ	PECASUS	SWPC	
Dec	13	ACFJ	PECASUS	SWPC	CRC	
	27	PECASUS	SWPC	CRC	ACFJ	
Jan 2023	10	SWPC	CRC	ACFJ	PECASUS	
	24	CRC	ACFJ	PECASUS	SWPC	
Feb	07	ACFJ	PECASUS	SWPC	CRC	
	21	PECASUS	SWPC	CRC	ACFJ	
Mar	07	SWPC	CRC**	ACFJ**	PECASUS	
	21	CRC	ACFJ**	PECASUS**	SWPC	

** Exercise of unplanned handover

Role&Responsibility of the SWXC

Monitor relevant ground-based, airborne and space-based observations to detect, and predict when possible, the existence of space weather phenomena that have an impact in HF, SATCOM, GNSS and RADIATION

Issue advisory information regarding the extent, severity and duration of the space weather phenomena

Supply the advisory information to:

- area control centres, flight information centres and meteorological offices;
- other SWXCs;

02

03

• **OPMET** databanks.

HF Communication

		J	
SWX ADVISORY			
DTG:	20201108/0100Z	M	
SWXC:	DONLON*		
SWX EFFECT:	HF COM		
ADVISORY NR:	2020/1		
OBS SWX:	08/0100Z SEV MNH EQN EQS MSH DAYSIDE MOD NIGHTSII	DE	
FCST SWX +6 HR:	08/0700Z NO SWX EXP		
FCST SWX +12 HR:	08/1300Z NO SWX EXP		
FCST SWX +18 HR:	08/1900Z NO SWX EXP		
FCST SWX +24 HR:	CST SWX +24 HR: 09/0100Z NO SWX EXP		
RMK:	SWX EVENT IMPACTING LOWER HF COM FREQ BAND. SEE	3	
	WWW.SPACEWEATHERPROVIDER.WEB	WX ADVISORY	
NXT ADVISORY:	WILL BE ISSUED BY 20201108/07/002	TG:	
* Местоположение условное	_	WXC:	
		WX EFFECT:	
	А	DVISORY NR:	
	N	R RPLC:	
	CNCC 0	BS SWX:	
		CST SWX +6 HR:	
SWX ADVISORY		CST SWX +12 HR:	
DTG:		CST SWX +18 HR: CST SWX +24 HR:	
SWXC:		MK:	
SWX EFFECT:	GNSS	WILL.	
ADVISORY NR:	2020/2		
NR RPLC:	2020/2 2020/1		
OBS SWX:	08/0100Z MOD HNH HSH W180 – E180		
FCST SWX +6 HR:	08/0700Z MOD HNH HSH W180 – E180		
FCST SWX +0 IIC	08/1300Z NO SWX EXP	XT ADVISORY:	
FCST SWX +12 HR:	08/1900Z NO SWX EXP	Местоположение усло	
FCST SWX +10 HR:	09/0100Z NO SWX EXP		
RMK:	SWX EVENT INPR POSSIBLY IMPACTING GNSS PER. ARI	ΕA	
Livity.	OF IMPACT MOVES WITH EARTH'S ROTATION, STAYIN		
	STRONGER ON NIGHTSIDE. EXP TO SUBSIDE IN THE FC		
	PERIOD. SEE WWW.SPACEWEATHERPROVIDER.WEB		
NXT ADVISORY:	WILL BE ISSUED BY 20201108/0700Z		
* Местоположение условное.			
fileerenenene yenobilee.			

Space Weather Advisory Message - Examples

Radiation

20201108/0100Z DONLON* RADIATION 2020/15 2020/13 2020/14 08/0100Z MOD N80 W180 - N70 W075 - N60 E015 - N70 E075 -N80 W180 ABV FL400 08/0700Z NO SWX EXP 08/1300Z NO SWX EXP 08/1900Z NO SWX EXP 08/0700Z NO SWX EXP 08/1300Z NO SWX EXP 08/1900Z NO SWX EXP 09/0100Z NO SWX EXP RTN TO BACKGROUND LVL INSIDE THE FIRST FCST PERIOD. SEE WWW.SPACEWEATHERPROVIDER.WEB WILL BE ISSUED BY 20201108/0700Z

ловное

SW phenomena thresholds

Effect	Sub-effect	Parameter used	Moderate	Severe		
GNSS	Amplitude Scintillation	S4 (dimensionless)	0.5	0.8		
GNSS	Phase Scintillation	Sigma-phi (radians)	0.4	0.7		
GNSS	Vertical Total Electron Content (TEC) TEC units		125	175		
RADIATION		Effective dose (micro-Sieverts/hour)	30	80		
HF COM	Auroral Absorption (AA)	Кр	8	9		
HF COM	Polar Cap Absorption (PCA)	dB from 30MHz riometer data	2	5		
HF COM	hortwave Fadeout (SWF) Solar X-rays (0.0-0.8 nm) (W-m-2)		1x10-4 (X1)	1x10-3 (X10)		
НҒ СОМ	Post-Storm Depression	MUF	30%	50%		
SATCOM	No threshold has been set for this effect					

Space Weather Mitigation

HF radio communications:

- switch to lower/higher HF radio frequencies during ionospheric storms/solar flares
- use alternate forms of communication (SATCOM or VHF)
- delay or re-route flights, particularly in polar regions

GNSS navigation and surveillance:

- increase spacing between aircraft
- use alternative navigation technology in impacted locations
- GBAS and SBAS GNSS augmentation system operators should monitor service performance and execute risk mitigation plans.

Radiation exposure on polar routes

- reduce altitude of polar flights
- re-route polar flights to lower latitudes

Evolution of Services and Needs

 Continue to improve forecasts – nowcasting, short-term forecasting and long-range forecasts

• Clear interaction between all participants – SWSXs, MET offices, flight crew and aircraft operators

Given the chaotic, eruptive nature of the phenomena, space weather may never be like weather, but we can try

State Civil Aviation Agency of the Kyrgyz Republic

THANK YOU

Natalia Kim

+996-551-220281

n.kim@caa.kg

- www.caa.kg
- 2 1 Azhybek Baatyr St., Bishkek city, Kyrgyzstan 720044

