

United Nations/Philippines Workshop on

the Applications of Global Navigation Satellite Systems

Compact, Low-cost GNSS Hardware: Potentials In Precise Positioning, Ionospheric Probing, Time Transfer And Application Development

> Anindya BOSE*, Somnath MAHATO, Sukabya DAN, S CHATTERJEE, Rahul MONDAL, P BANERJEE

> > GNSS Laboratory Burdwan Department of Physics, The University of Burdwan INDIA

E: abose@phys.buruniv.ac.in

X: @dranibose

- > The Global market potential of GNSS and Current Multi-GNSS Scenario
- The Compact, Low-Cost GNSS Modules
- Use Case: Positioning
- Use Case: Atmospheric Research
- Use Case: Time Transfer
- Application Development Examples

Final Remarks

The ever-growing GNSS market

Shipments by region

2024 2025 2026 2027 2028

2024 2025 2026 2027 2028

North America

Non-EU27 Europe

Source: EUSPA EO and GNSS Market Report, Issue 2, copyright © European Union Agency for the Space Programme, 2024

https://www.euspa.europa.eu/2022-market-report

Multi GNSS environment: Advantage Asia

Typical skyplot for Western India (23 June, 2019: 18:11 hrs IST) 54 satellites in view, 45 used GNSS receiver screenshot

GPS+GLONASS+Galileo+Beidou + NavIC+QZSS

mulated Multi-GNSS visibility (<u>Multi-GNSS Asia- MGA</u>) The Asia Oceania Region is the Multi-GNSS signal hotspot

GNSS View App Screenshot

Typical skyplot for Eastern India (04 March 2019: 15:00 hrs IST) 54 satellites in view GNSS receiver screenshot

GPS+GLONASS+Galileo+Beidou				
+				
NavIC+QZSS				

GNSS User Segment

Q: How to exploit the full benefits of the situation ?

A: GNSS receivers of varying cost, capability and complexity

Q: How to cater the need of the mass-market, typically in costconstrained situations ?

A: Compact, Low-cost, Power-efficient GNSS modules

GNSS Compact, Low-Cost Modules

Compact modules are commercially available in the market Compact Low cost Single (CLS) and Compact Low cost Dual (CLD) frequency enabled

Advantages

- Low cost : <USD 1000; Compact: <100 grams
- Small size, low-power consumption
- Can be directly attached to Computers to log data (raw/ NMEA)
- Multi-constellation, Multi frequency
- Arduino and other Microcontroller Compatibility for data transfer and application
- RTK-enabled boards, Carrier phase measurements

Limitations

• Needs training in using such modules

- uBlox ZED F9P (F9P) CLD module together with an uBlox ANN commercial patch antenna is used for GNSS SPP, PPP, and as the RTK rover.
- The total cost of the hardware is less than 380 USD and open- source GNSS data processing software (RTKLib) is used in the work.
- For SPP, data from the F9P-patch antenna (placed in an open-sky condition) combination is collected in a computer using the u-center software from uBlox.

SPP and PPP performances offered by • compact GNSS module (uBlox F9P)

SPS (m)		2DRMS	2.897
		CEP	1.348
		SEP	2.746
		MRSE	2.988
ррр (m)	D	Latitude	0.004
	lin	Longitude	0.003
	ō	Altitude	0.010
ррр (m)	Ð	Latitude	0.014
	flin	Longitude	0.013
	ō	Altitude	0.018

- Performance evaluation of F9P CLD GNSS module used with a commercial patch is conducted for GNSS SPP and PPP
- Table shows the SPP and PPP, (Offline and Online) solution qualities provided by the F9P CLD GNSS module against the same dataset.
- SPP: The 2D and 3D solution accuracy in SPP w.r.t the Reference Coordinate (RC), lies between 2-3m. SPP using CLD GNSS modules is a very convenient and cost-efficient method of real-time geolocation when the offered solution quality is sufficient for the users.
- PPP: Online PPP provides solution accuracy in the order of few mm (95% confidence level) in the horizontal coordinate and in centimeter-level for the vertical coordinate.

3.4 Positional Uncertainty (95% C.L.) - Geodetic, ITRF2014

Station	Longitu	ide(East)	(m) L	atitude(North) (m) Ell:	ipsoidal	Height(U	Jp) (m)	
R000	0.005			0.003				0.010		
Coordinate		X (m)			Y (m)			Z (m)		
Date	GPS	GLO	GPS+ GLO	GPS	GLO	GPS+ GLO	GPS	GLO	GPS+ GLO	
24/04/2021	0.003	0.080	0.003	0.003	0.015	0.003	0.013	0.036	0.012	
25/04/2021	0.003	0.013	0.003	0.003	0.025	0.003	0.013	0.059	0.013	
26/04/2021	0.004	0.122	0.004	0.004	0.279	0.004	0.018	0.267	0.018	

- GPS only, uBLOX F9P, 2021
- Results from AUSPOS online PPP service
- NTLab 104v3, 2021
- Results from NRCAN online PPP service

RTK: Data collection Locations

The experiment is conducted for multiple short to long baseline length (<220 km) RTK performance evaluation.

Different RTK Rover Locations at eastern India is shown on the left ; Base Location is marked in green and Rover locations are marked in red.

 Data is collected at each location @1Hz for 1 hour each (3600 epochs) using the GNSS CLD module during <u>June-December 2022</u>.

"Single Baseline Long Distance RTK using CLS GNSS Module and Open-Source Software: A Case Study from India", Somnath Mahato, Mrinal Goswami, Surajit Kundu and Anindya Bose, IETE Journal of Research, April 2023, Dol: https://doi.org/10.1080/03772063.2023.2192424

RTK: Results

Short to long-distance RTK performances offered by compact GNSS modules (uBlox F9P) as Rover in GPS mode

Baseline	Solution precision values (m)					
Distance (km)	2DRMS	CEP	SEP	MRSE		
1	0.053	0.087	0.093	0.121	•	
22	0.287	0.254	0.207	0.242		
40	0.584	0.523	0.562	0.582		
50	0.444	0.417	0.321	0.376	•	
100	0.677	0.628	0.597	0.605		
135	0.829	0.81	0.802	0.843		
220	0.997	0.968	0.948	0.989		

- Table shows the position solution quality provided by the F9P CLD module used as Rovers at different baseline distances.
- Short baseline lengths up to around 50km, solution precision of less than 50 cm both for 2D and 3D is obtained.
- For higher baseline lengths, the solution quality slowly degrades with increasing distance, but even for the baseline distance of more than 200 km, the 2D and 3D precision remains within 1 m in GPS-only operation.

• A single Base is used upto 200+km baseline together with the low-cost module for RTK; real-time submeter position solution is achievable reducing the overall infrastructure cost.

In Ionospheric Studies

Experimental setup for the comparative study of Ublox ZED F9P and Javad Triumph LS receiver for GNSS-based ionosphere study

GPS TEC Comparison (Geodetic v/s CLD)

Dan, S., Santra, A., Mahato, S., Koley, C., Banerjee, P. and Bose, A., On use of low cost, compact GNSS receiver modules for ionosphere monitoring. *Radio Science*, *56*(12), 2021

S4 Comparison (GLONASS) (With low S4 values)

S₄ Comparison (GPS, March 2022) (With higher S4 values)

GLB

16

S₄ Comparison (GPS, October 2022) (With high S4 values)

L1 Band C/A Coded Signal Logged by Leica GR50 @50Hz

L2 Band L2C(M) Coded Signal Logged by Leica GR50 @50Hz

L2 Band L2C(L) Coded Signal Logged by Ublox ZED F9P @20Hz

15

UTC Time (Hr)

15.5

16

Fine structure analysis (Fade rate) also reveals similar results for both types of GNSS hardware

GPS (left) L1 band and (right) L2 band, PRN #4 [Date: 05/10/2022]

14

14.5

BDS (left) B1 band and (right) B2 band, PRN #16 [Date: 05/10/2022]

In Time Transfer

- All compact Module chips come with 1pps output pin on the SoC
- Some of the EVKs come with 1pps over convenient output option (SMA)
- Preliminary studies using some of the modules have been taken up with special emphasis on NavIC timing capabilities

Limitations:

- Off-the-shelf compact modules always do not offer convenient 1pps output
- In most of the cases, no provision for 10 MHz reference IN signal is not there

uBlox M8T

NTLab 104

uBlox F9T

TELIT SE868K5-I

In Time Transfer

(Initial results using NavIC-enabled Compact Modules)

• Experiments performed at CSIR-NPL, New Delhi with the availability of standard time reference

- Both for GPS and NavIC, uBlox F9T shows <10ns jitter over 1 day w.r.t UTC(NPLI)
- For NavIC, NTLab 104 module shows ~12ns jitter over 1 day w.r.t UTC(NPLI)
- More study needs to be undertaken

Mass Market Application Examples

- Can provide Real Time Alert Messages for High Tide, Cyclone, Tsunami (as transmitted by INCOIS)
- Also provides Fishing Zone Alert info
- The application is developed using a USD 10 NavIC Module

Project: Smart and precision agriculture for potato cultivation in West Bengal: An Information and Communication Technology (ICT) based effort

Sponsor: DST, SERB, Govt of India

- GIS-GNSS-IoT integrated service
- GNSS module cost ~5 USD for the multi-sensor device
- RTK used for precision agri.

- The compact, cost-efficient modules have potential for mass market PNT and non-PNT applications with the advantages of size, weight, cost and power efficiency
- The associated positioning technology may be chosen as per the user requirements
- Need for more training and capacity building efforts this event is a suitable platform to discuss the issue
- Need for more synergy between Industry-Academia-Research and Users

THANK YOU

Acknowledgement

- Space Application Center (SAC), ISRO, Ahmedabad
- AICTE, New Delhi
- DRDO HQ, New Delhi
- ITR-DRDO, Chandipur
- SERB-DST, Gol
- NGP-DST, Gol

Visit us at: http://bugnss.in

