United Nations / Philippines Workshop on the Applications of Global Navigation Satellite Systems Manila, Philippines 22 – 26 April 2024

PILOT EXPERIMENT OF MADOCA-PPP FOR BASE POINT INSTALLATION IN A REMOTE ISLANDS OF THE PHILIPPINES

EXALUSA | KOGYO 23 Apr, 2024

Tadashi Sasakawa, Ph. D. Kokusai Kogyo Co., Ltd. (KKC), Yoko Sakai QZSS Strategy Office, National Space Policy Secretariat, Cabinet office, Ruel DM. Belen, MNSA, Director, National Mapping and Resource Information Authority, Abner A. Belmonte Geophysicist II, National Mapping and Resource Information Authority

Purpose of the pilot experiment in the Philippines

The purpose

(1) Verify that MADOCA-PPP is the most effective tool for surveying remote islands where any relative positioning is not available.
(2) "Technical guideline" will be enable accurate national mapping projects to be developed for remote islands.

Single Point Positioning

(SPP) is the most basic form of GNSS surveying, where a single receiver collects satellite signals to determine its position.

Relative positioning (RTK, STATIC, Network-RTK)

Stand alone positioning (SPP, PPP)

Precise Point Positioning

(PPP) is a global navigation satellite system (GNSS) positioning method that calculates very precise positions with error correction data of satellite clock, orbit and signal bias (code/phase)

🗲 KOKUSA I KOGYO

Technical guideline for using MADOCA-PPP

Positioning

The technical guideline will provide sufficient technical support for application to surveying methods on remote islands where we cannot use relative positioning by GNSS and will be made **open to the public with the verification results.** When any country adopts it, it will be customized depending on the country's situations.

Required Accuracy

Horizontal: SD 5 cm (CE95 10 cm) Vertical : SD 10 cm (CE95 20 cm)

Points of technical guideline

verification

<u>Convergence condition</u>: Indicate the convergence condition of the positioning solution to satisfy the required accuracy.

(Acceptance criteria : Indicate the acceptance criteria for positioning solutions obtained during convergence.

<u>Conversion to reference coordinate</u>: Add correction amount of crustal deformation <u>Elevation calculation</u>: Use the regional geoid model provided by the International Geoid Project

Draft.: Measure 2 sets for 30 minutes and check the deference between 2 sets

Domestic (Japan) verification experiment

* Verification1

- 72 hours was conducted
- Comparative verification using true cordinates by statistics .

* Verification2

- Two methods of MADOCA-PPP and RTX are observed for 40 minutes x 10 times (50 times) at 5 locations (accutually 46sets due to restart trable) with different environments *
- Statistical arrangement of convergence time and solution stability.

(1) Equipment

- 1) GNSS receiver
 - •Trimble Alloy (S/N: ①6141R40139、②6141R40178、③6205R40073)

• Core <u>Cohac</u>∞ TEN+ (S/N: ①D900-00530、 ②D900-00531、 ③D900-

00532)

*Positioning Signal: GPS、QZSS、GLONASS、Galileo

2) GNSS Antena

- Trimble Zepher Geodetic2 (S/N: ①5000114042)
- Trimble Zepher Geodetic3

(S/N: 11430767526, 26122223912, 3612223902)

3)Splitter

• INSTOCK Wireless Components GPS420 3 unit

Measurement system for Baseline test points of GSI

72 hours observation (calculation of antenna position)

- Observations were conducted for 72 hours from August 4, 2023, 9:00 JST (UTS 0:00) to August 7, 2023, 9:00 JST.
- In order to obtain true coordinates, the current coordinates of the reference antenna position were calculated from baseline analysis using with 3 CORS from GSI (including practical network average calculation).

Table Using CORS and R5 solution coordinates						
point name	R5 release	Latitude		Longituc	le Ellipsoid	
	date		(dms)	(dms)	height (m)	
Tsukuba	2023-07-28	36	60622.0052	1400513.92	299 70.357	
(92110)						
Ishishita	2023-07-28	36	60653.3240	1395553.43	67.656	
(960583)						
Ami (960584)	2023-07-28	36	60152.8146	1401208.84	108 70.902	
Table. Practical network average results						
Observation	Latitude	(dms)	Lor	ngitude (dms)	Ellipsoid	
date					height (m)	
2023-08-04	360545	.1100) 1400638.3995		74.6669	
2023-08-05	360545	.1099	99 1400638.3994		74.6700	
2023-08-06	360545	.1099	1	400638.3996	74.6705	
average	360545	.1100	1	400638.3995	74.6702	

Figure 2. Observation situation o

🗲 KOKUSA I KOGYO

Results of 72 hours observation

Copyright © Kokusai Kogyo Co., Ltd. All Rights Reserved.

Results of the first 8 hours /72 observation

🥌 KOKUSA I KOGYO

Baseline field (5 locations) observation

- Observations were conducted using the Geospatial Information Authority of Japan's baseline field.
- MADOCA-PPP and RTX simultaneous observation for 40 minutes
- Baseline field coordinates are current period coordinates

Fig. Observation status of baseline field

Figure . Baseline field location

Table . Baseline field measurement points and result values used

	Takaoka No.1	Takaoka No.5	Takaoka No.10	Premises No.11	Kunimatsu No.13
Latitude (dms)	360738.44422	360745.1723	360759.2594	360620.43868	361253.06302
Longitud e (dms)	1400834.80801	1400824.39256	1400802.58220	1400515.56917	1400415.79012
Ellipsoid height	47.791	48.312	49.339	66.928	67.473
X	-3959304.313	-3959043.864	-3958498.440	-3957208.496	-3950773.565
Y	3305446.372	3305568.201	3305823.233	3310188.480	3306752.347
Z	3739642.260	3739810.066	3740161.366	3737711.257	3747482.290

Baseline field observation results

- Time series plots were created from the results obtained for each set (46). Right side figure shows the results of Takaoka No. 1 's first set.
- As trend, it can be seen that all positioning results fluctuate immediately after the start of observation, but converge over time.
- Snapshots of the horizontal distribution of each data are shown in Figures.
- MADOCA solution, we obtained results that both 2σ and RMS were below 10cm in about 25 to 30 minutes.

Baseline field observation results

MADOCA solutions obtained at each station were divided into 100-second intervals, and 2σ and RMS were calculated and evaluated. Error bars indicate the standard deviation (8~10 sets) from the mean value. From this result, statistically speaking, we also obtained evidence that convergence stable time for 8 ~ 10 sets of observation

1.0

0.0 No.10

dV(m)

(m) Hb 0.5 2σ & RMS results of TEN with errorbar at No10

∎

●

●

●

RMS(S)

RMS(U)

20(U)

2ơ(S)

9

Conclusion based on statistical data

36

Copyright © Kokusai Kogyo Co., L...

- The reference measurement time was determined from the convergence time distribution for each
- With TEN +, the CE95 value for which the RMS is 10 cm or less horizontally is 30 minutes: 1800SEC , and even if the RMS is 20 cm or less in the vertical direction.

Conclusion: Observation time of 10 cm horizontally and 20 cm vertically (CE95) is 1800sec

Statistically, if you measure it for 1800 seconds, there is a 95% provability that horizontal accuracy will be less than 10 cm.

Figure . Number of sets by accuracy and convergence time

MADOCA-PPP Technical guideline (outline)

How to install base points using MADOCA-PPP in areas where relative positioning is not possible

Tachnical	auidalina /	
recimicai	guidenne	

Ver.1.0

On the way

	1) Number of observations, data acquisition interval							
	Observation ti	ne	Data acquisition interval					
	One set of 100 epochs with 1700 or more observation. Two sets of observations will	1 second						
	remarks 1. After completing the first set	of observations, reinitialize and	l perform the second set of					
S	2) Observation conditions							
	messenger for Mamoru Star	QZSS, GPS, GALILEO and GLONASS satellite						
	minimum altitude angle	15 ° is standard						
number of satellites 10 more than a satellite								
	remarks 1. Use a tripod or antenna pole to position the antenna . 2.Obtain satellite flight forecast information and check the number of satellites 3) Evaluation							
	Number of evaluation unit		2 Sets					
	Evaluation method	veen sets						

remarks 1. The addapted coordinates values are the average values obtained from two sets of observations

100 mm or less (200mm or less for height)

 ΔN is the difference in the north-south direction of the horizontal plane, and ΔE is the difference in the east-west direction of the horizontal plane.

Standerd Accuracy

Verification of technical guidelines

Comparison between sets was performed as one set (100 epochs: 1701-1800).

				•					
						ΔN - difference	ΔE - difference	ΔU - difference	Difference
Fie	l Set	ΔN average	ΔE average	ΔU average		between sets	between sets	between sets	accuracy
d	No.	residual (m)	residual (m)	residual (m)	ΔNE(m)	(mm)	(mm)	(mm)	judgment
1	1	-0.0540	0.0516	0.0694	0.0759				
	2	0.0230	-0.0582	-0.0613	0.0633	77.0	-109.9	-130.7	Δ
	4	-0.0270	-0.0036	0.0099	0.0354	-50.0	54.7	71.2	0
	e	-0.0685	0.0661	0.0524	0.0954	-41.5	69.7	42.4	0
	7	-0.0607	-0.0681	0.1948	0.0915	7.8	-134.2	142.4	Δ
	8	0.0055	0.0578	-0.0305	0.0585	66.2	125.9	-225.3	Δ
	ç	-0.0448	-0.1017	0.0446	0.1113	-50.3	-159.5	75.1	Δ
5	1	-0.0093	-0.0827	-0.0206	0.0834				
	2	-0.0155	0.0361	0.0455	0.0406	-6.2	118.8	66.1	Δ
	3	0.0232	0.0295	0.0254	0.0399	38.7	-6.6	-20.1	0
	4	-0.0282	0.0951	0.0882	0.0993	-51.4	65.6	62.8	0
	5	-0.0154	0.0486	0.0067	0.0520	12.8	-46.5	-81.5	0
	7	0.0096	-0.0506	-0.0289	0.0519	25.0	-99.2	-35.6	0
	8	-0.0198	0.0559	-0.0395	0.0597	-29.4	106.6	-10.6	Δ
	ç	0.0101	0.0233	0.1289	0.0255	29.8	-32.7	168.4	0
	10	-0.0069	-0.0128	-0.0367	0.0205	-17.0	-36.1	-165.7	0
10	1	-0.0341	0.0322	0.0275	0.0487				
	2	0.0107	0.0612	0.0582	0.0628	44.8	29.0	30.7	0
	3	-0.0132	-0.0218	-0.0085	0.0312	-24.0	-83.0	-66.6	0
	4	-0.0175	-0.0506	0.0559	0.0539	-4.2	-28.9	64.4	0
	5	-0.0471	0.0139	-0.0128	0.0495	-29.6	64.5	-68.7	0
1	e	0.0365	-0.1059	-0.0427	0.1126	83.5	-119.7	-30.0	Δ
1	7	-0.0297	-0.0202	-0.0604	0.0368	-66.2	85.7	-17.7	0
1	8	0.0106	0.0138	-0.0256	0.0176	40.3	34.0	34.8	0
	ç	0.0060	-0.0218	0.0028	0.0255	-4.5	-35.6	28.4	0
	10	-0.0384	-0.0412	0.1643	0.0595	-44.4	-19.4	161.5	0

less		100.0%	97.8%	97.8%		100.0%	100.0%	93.3%	93%
20cm									ΟΔ
		97.8%	91.1%	88.9%		97.8%	73.3%	77.8%	53%
10cm less									0
1	10	0.0511	0.0537	0.2105	0.0742	-51.5	-32.7	392.7	0
	9	0.1026	0.0864	-0.1822	0.1343	95.9	123.5	44.3	\bigtriangleup
	8	0.0067	-0.0371	-0.2265	0.0384	15.6	-8.5	-262.6	Δ
	7	-0.0089	-0.0286	0.0361	0.0319	-28.8	-5.6	205.9	Δ
	6	0.0199	-0.0230	-0.1698	0.0305	-14.1	-57.0	-203.8	\bigtriangleup
	5	0.0340	0.0340	0.0340	0.0340	3.1	67.5	137.5	0
	4	0.0309	-0.0335	-0.1035	0.0468	33.3	-155.0	103.5	Δ
	3	-0.0024	0.1215	-0.2070	0.1217	-11.7	-168.2	-177.0	Δ
	2	0.0093	0.2897	-0.0300	0.2900	6.8	227.2	30.7	0
13	1	0.0025	0.0625	-0.0607	0.0642				
1	10	-0.0599	-0.0807	-0.1450	0.1011	-78.0	-86.3	-202.3	\triangle
	9	0.0181	0.0056	0.0573	0.0224	100.5	129.1	-782.1	×
	7	-0.0825	-0.1235	0.8394	0.1485	-90.8	-134.2	1256.4	×
	6	0.0084	0.0106	-0.4170	0.0157	68.5	-25.6	-457.9	×
	5	-0.0601	0.0363	0.0409	0.0704	-72.9	, 1.1	95.6	0
	4	0.0128	0.0345	-0.0547	0.0380	20.4	74.1	-17.0	
	2	-0.0077	-0.0395	-0.2737	0.0813	-64 5	-27.0 -97.2	236.0	Δ
11	2	0.0107	0.0047	-0 2737	0.0804	73.6	-27 0	-297.6	^
11	1	-0.0167	0 0847	0 0239	0 0864				

Work in island

Basic policy for overseas demonstrations

1. Understanding and promoting the use of MADOCA-PPP

2. Practice of

ocean remote island

* Target islands : Maricaban (base point) - Balahibong Manok Island (mapping)

* Base point set up in Pisa, Maricaban Island (MADOCA-PPP & 8 hour measurement)

* Surveying Balahibong Manok Island from the base point using RTK (satellite image control point)

* Single point survey conducted using MADOCA-PPP for verification (backup of RTK)

* DTM has purchased data from aircraft SAR and obtained a quotation for satellite images.

Figure 11. Location of overseas remote island demonstration

🥌 KOKUSA I KOGYO

Pilot experiment as more practical survey methods

In areas where relative positioning from CORS is not possible, it is more efficient to determine just one point using PPP and perform RTK from this point than to measure all survey points using PPP.

• Establish a temporary base point in PISA. (SPP 8 hours measurement and PPP)

RTK will be performed through simultaneous observation of the signal at this base point and the rover.
We will also carry out MADOCA-PPP observation to confirm the difference with RTK.

"PPP+RTK" is the best geocoding method for making control points, such as overlay satellite images and aircraft SAR DTM.

🥌 KOKUSA I KOGYO

Result of RTK and MADOCA-PPP

NGS 84		
oint ID	Longitude	Latitude
PISA (BASE)	120 56 39.5581	13 38 07.9388
PISA-1	120 57 52.1355	13 37 39.9708
RTK-1(10)	120.9644821	13.62776969
VADOCA-PPP	120.9644818	13.6277698
呉差	2.83333E-07	-1.05556E-07
呉差(cm)	3.073732799	-1.167766489
PISA-2	120 58 00.0190	13 37 36.7516
RTK-2(10)	120.9666719	13.62687544
VADOCA-PPP	120.9666709	13.6268757
呉差	1.04444E-06	-2.55556E-07
呉差(cm)	11.33062279	-2.827224161
PISA-3	120 57 55.3328	13 37 35.9233
PISA-4	120 57 50.1463	13 37 40.6224
AADOCA-PPP 供差 供差(cm) PISA-2 ATK-2(10) AADOCA-PPP 供差 供差(cm) PISA-3 PISA-4	120.9644821 120.9644818 2.83333E-07 3.073732799 120 58 00.0190 120.9666719 120.9666709 1.04444E-06 11.33062279 120 57 55.3328 120 57 50.1463	13.6277698 13.6277698 -1.05556E-07 -1.167766489 13 37 36.7516 13.62687544 13.6268757 -2.55556E-07 -2.827224161 13 37 35.9233 13 37 40.6224

Establishment of new digital society using GNSS and Geospatial information

Designing the future of people, communities and planet by connecting the dots

