GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS) CO-LOCATED TIDE STATIONS: PURPOSE AND PROSPECTS IN THE PHILIPPINES

Presented during: United Nations / Philippines Workshop on the Applications of Global Navigation Satellite Systems Manila, Philippines 22 – 26 April 2024

Presented by: <u>Dennis Bringas</u> Chief, Physical Oceanographic Division Hydrography Branch, NAMRIA

Outline of Presentation

- Geographical Setting
- **O**2 Physical Oceanography Division (POD)
- **O***3 Primary Tide Stations of the Philippines*
- **O**4 Co-located Global Navigation Satellite Systems (GNSS) Tide Stations
- **05** Purpose: Vertical Land Motion Monitoring
- **O6** Coastal Sea Level Rise (CSLR) Project: Discussions, Results and Conclusions
- **O7** Development of GNSS Tide Gauge and Float Buoy
- **O8** Prospects: GNSS Interferometric Reflectometry (GNSS-IR)
- **O9** Preliminary Activities: GNSS-IR Analysis Software (GIRAS) Initial Data Evaluation
 - Issues and Concerns
 - Ways Forward

2

Geographical Setting

- The Philippine archipelago lies in the middle of the Philippine Sea adjacent to
- the Pacific Ocean to the east and to its west coast, West Philippine Sea.
- ✓ Geographically an archipelago and geologically sits on various tectonic plates, the Philippine Plate and particularly part of the so-called "Pacific Ring of Fire".
- ✓ The Philippines mapping and charting agency, the NAMRIA is responsible for the establishment and maintenance of reliable geodetic reference datum.
- ✓ For the vertical component of this geodetic reference datum, the NAMRIA's Physical Oceanography Division operates and maintains at least 60 tide stations throughout the country.

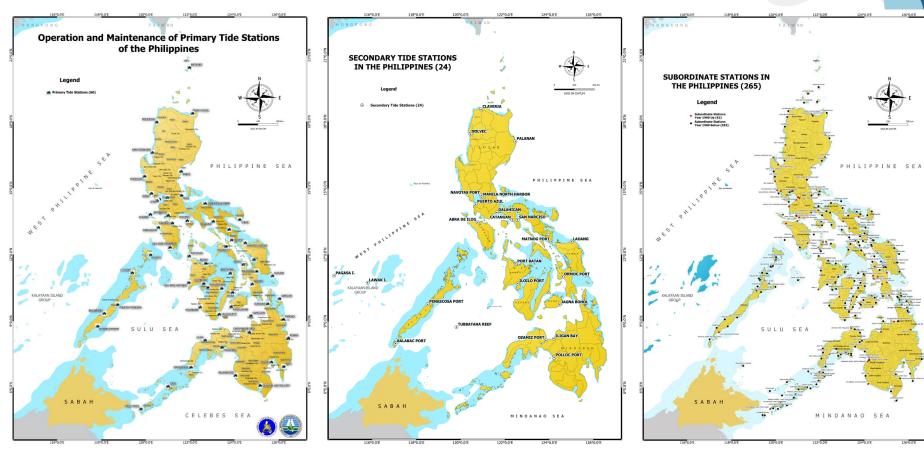
Physical Oceanography Division

• • • Physical Main Responsibilities Oceanography Responsible for the establishment and determination of a reliable vertical Division

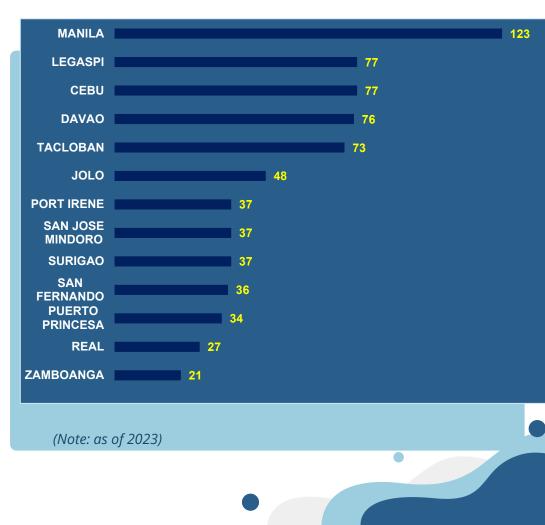
Responsible for the establishment and determination of a reliable vertical reference datum primarily used in hydrographic surveys, nautical charting & topographic mapping.

Operates and maintains a network of permanent tide stations throughout the country that continuously collects and records sea level data

Responsible for the publication of the annual Tide and Current Tables (TCT).

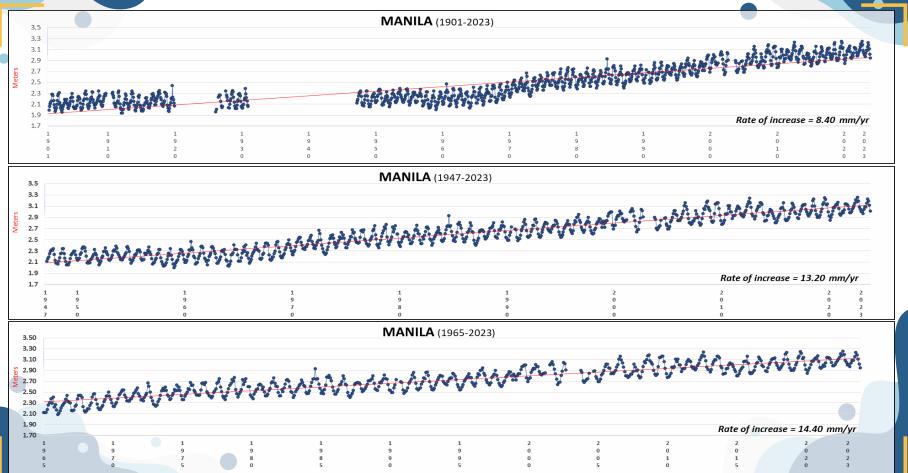


Ensures the stability of tide gauges by establishing and maintaining tide gauge benchmarks (TGBM's) to monitor tidal datum variations or changes through time.


Ĵÿňů ẻÿĂħijijĂļfġ∆ûư⊽

Ļijħûưị ẻÿ ĂħijijĂţfġ∆ûưÿ

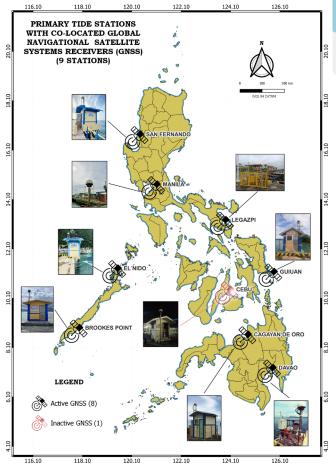
Ļ* hûÿi řưẻfij**Ăti**jij**Ăfij**∆ûưÿ


LONG-TERM **TIDE STATIONS** IN THE **PHILIPPINES** (13)

TIDE STATION	RATE OF INCREASE/ DECREASE (mm/yr)	TREND Rising/Falling	PERIOD	NO. OF YEARS
MANILA	8.4/13.2/14.4	R	1901-2023	123
LEGASPI	6.00	R	1947-2023	77
CEBU	1.20	R	1947-2023	77
DAVAO	3.60	R	1948-2023	76
JOLO	0.24	R	1949-1996	48
PORT IRENE	4.80	R	1987-2023	37
SAN JOSE MINDORO	2.40	R	1987-2023	37
SURIGAO	4.80	R	1987-2023	37
SAN FERNANDO	-1.20	F	1988-2023	36
PUERTO PRINCESA	4.80	R	1990-2023	34
TACLOBAN	0.06	R	1951-2023	34
REAL	3.60	R	1996-2023	28
ZAMBOANGA	-1.20	F	2003-2023	21

HĻ**GĂĞ ĦĐĂNBJL**HĂ N**JBĦÅĂĻŊ**HHĂLÒ

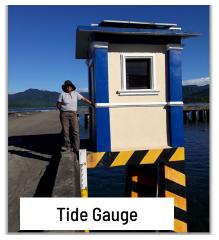
OBSERVED MONTHLY MEAN SEA LEVEL TRENDS



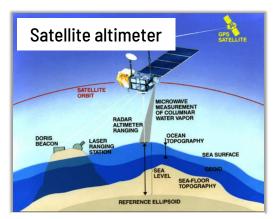
GNSS Co-located Tide Stations

- Year installed (2016-2017)
- GNSS Receiver: Topcon Net-G5
- GNSS Antenna: TPSCR.G5 TPSH (Choke Ring)
- Data Access: via FTP
- Data Logging: 1 second
- Antenna Height: 4.14 meters above "SFD GNSS" station mark

Purpose

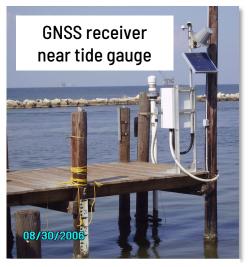

 ✓ Continuous GNSS observations at tide stations to determine the contribution of Vertical Land Motion (VLM) to sea level rise.

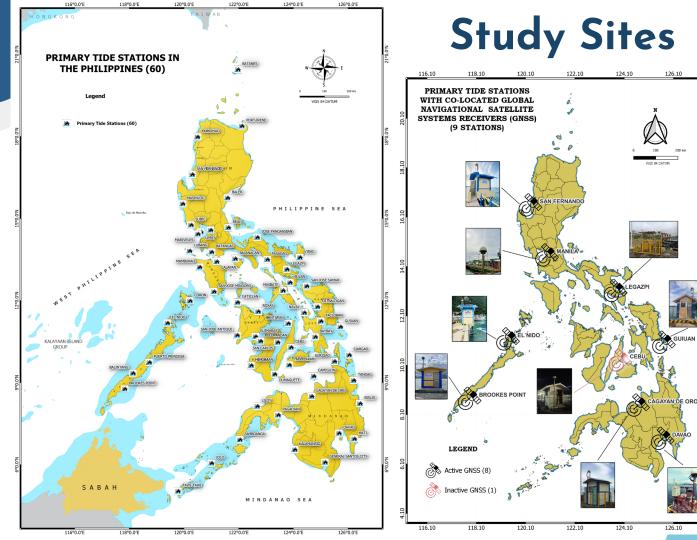
✓ Input data for the collaborative research project on Coastal Seal Level Rise (CSLR) with the University of the Philippines Department of Engineering (UPDGE).


The CSLR Research Project

- The project was conceptualized to determine relative sea level changes at the coasts using tide gauge and satellite altimetry data. The correlation of the satellite altimetry data to tide gauge measurement will determine its[•] usability on areas without tide gauges.
- ✓ Vertical Land Motion (VLM) was investigated on tide stations where colocated with Global Navigational Satellite Systems (GNSS) receivers. The data from GNSS were post-processed to determine the VLM rates.
- ✓ In addition, the project also developed a low-cost GNSS tide gauge float and buoy for sea level monitoring.

Data Sources


Affected by ground movement


Not affected by ground

Detects ground movement

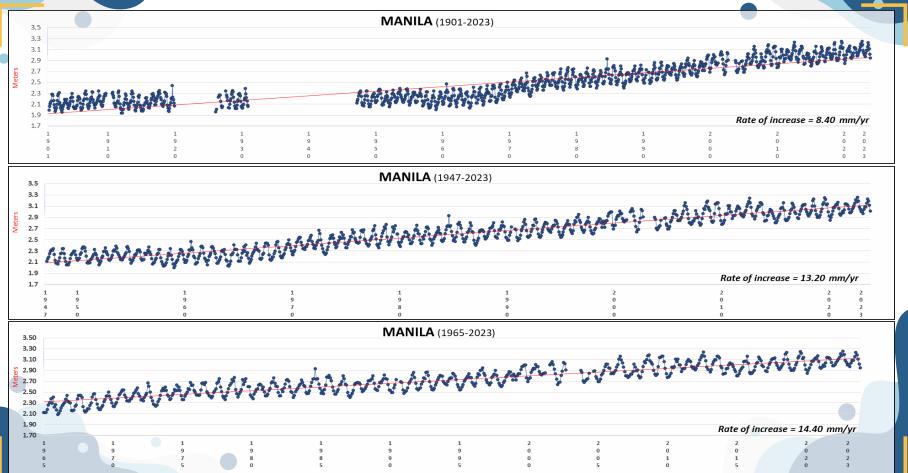
Detects ground movement

- ✓ 25 tide stations were selected as study sites
 - 9 of these tide stations were collocated with GNSS receivers (Manila, San Fernando, Legaspi, Cebu, Guiuan, Cagayan de Oro, Davao, Brookes Point and El Nido)

Determining the contribution of VLM to sea level rise using PSInSAR, GNSS · and SSH-TGSL difference

PSInSAR (Permanent Scatterer Interferometric Synthetic Aperture Radar) uses radar signals from satellite to measure ground displacement.

- GNSS data at TG or nearby Active Geodetic Network Station (AGN).
- SSH-TGSL difference Sea Surface Height (SSH) from SA minus the TG sea level


Vertical Land Motion (VLM) rates (mm/yr)

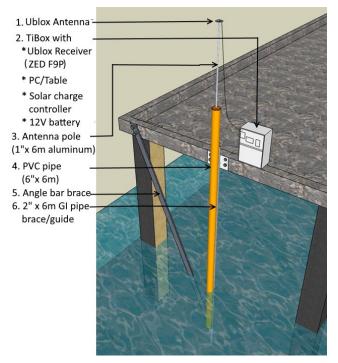
Location	PSInSAR	CGNSS Tide Stations
Manila	-1.40	-1.00
San Fernando	-1.10	-0.62
Cagayan de Oro	-6.80	-5.43
Guiuan	-1.40	-0.91
Cebu	-0.90	-1.11
El Nido	-5.20	-5.20
Davao	-1.40	-1.59
		_

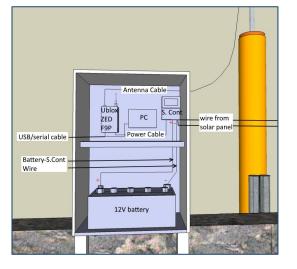
Results: Net local SLR (mm/yr)

Location	SLR	VLM	Net SLR
Manila	14.4	-1.00	13.4
San Fernando	-1.2	-0.62	-1.82
Cagayan de Oro	6.0	-5.43	0.57
Guiuan	3.6	-0.91	2.69
Cebu	1.2	-1.11	0.09
El Nido	6.0	-5.20	0.8
Davao	3.6	-1.59	2.01

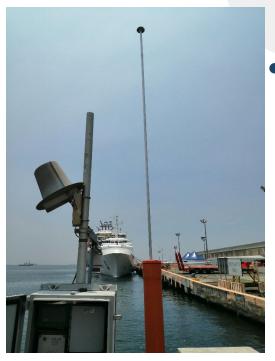
OBSERVED MONTHLY MEAN SEA LEVEL TRENDS

VLM from GNSS observations in the Philippine Active Geodetic Network (AGN)

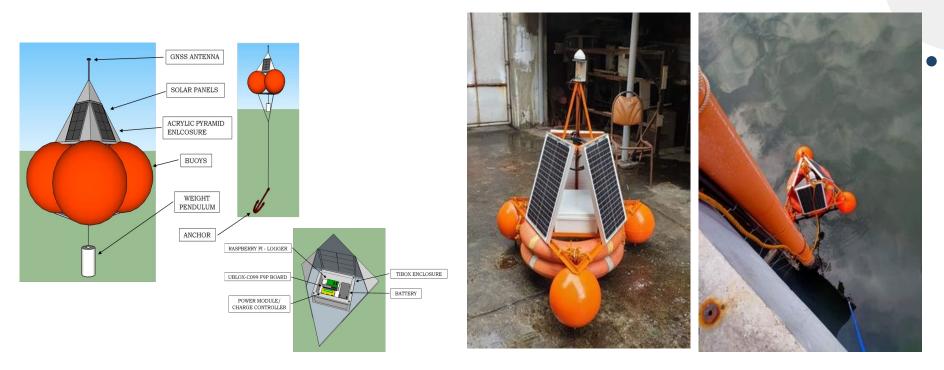

AGN	Location	Period	CSLR-Phil	NAMRIA	
PBAS	Basco, Batanes	2014-10 to 2019-12	-2.98	-3.35	
PMOG	Mogpog, Marinduque	2014-08 to 2019-12	-2.58	-2.23	
PCB2	Cabanatuan, Nueva Ecija	2012-08 to 2019-12	-16.57	-15.48	-
PTGO	Tagoloan, Misamis Oriental	2013-11 to 2019-12	-2.08	-2.40	
PCLP	Calapan City, Oriental Mindoro	2015-12 to 2019-12	-3.62	-5.74	
PKAL	Kalibo, Aklan	2015-01 to 2019-12	-17.99	-17.55	
PCEB	Cebu City, Cebu	2014-04 to 2019-12	-5.23	-4.97	
PDAV	Davao City, Davao del Sur	2013-04 to 2019-12	-5.01	-4.95	•
PNDO	El Nido, Palawan	2014-08 to 2019-12	-2.74	-2.13	^
PGEN	Gen. Santos City, South Cotabato	2010-04 to 2019-12	-4.98	-4.05	
PBOR	Borongan, Eastern Samar	2018-01 to 2019-12	-14.53	-21.25	
PGUM	Gumaca, Quezon	2018-09 to 2019-12	-19.32	-22.27	
PLEG	Legazpi City, Albay	2011-03 to 2019-12	-3.58	-3.77	
PTAG	NAMRIA Office, Taguig City, MM	2008-09 to 2019-12	1.02	3.11	
PDIP	Dipolog City, Zamboanga del Norte	2015-09 to 2019-10	-3.54	-4.78	
PPAG	Pagadian City, Zamboanga del Sur	2018-07 to 2019-12	-19.69	-12.9	
PPPC	Puerto Princesa City, Palawan	2010-12 to 2019-12	-1.28	-1.15	
PILC	lloilo City, lloilo	2010-04 to 2019-12	-3.31	-4.31	
PBGU	Baguio City, Benguet	2016-09 to 2019-12		-5.79	
PCDN	Candon City, Ilocos Sur	2016-09 to 2019-12	-5.31	-5.5	
PSTN	Sta Ana, Cagayan	2015-06 to 2019-11	-4.42	-5.01	
PBIS	Bislig City, Surigao del Sur	2016-10 to 2019-10	-9.37	-8.3	S
PZAM	Zamboanga City, Zamboanga del Sur	2014-04 to 2019-12	-1.65	-1.29	


DEVELOPMENT OF A GNSS FLOAT AND BUOY TIDE GAUGES

- NAMRIA was able to design and develop two (2) types of tide gauges (float & buoy) using GNSS receivers as sensors in monitoring variations of sea level.
- The tide gauges could record sea level heights in terms of the ellipsoidal heights and showed acceptable differences with in-situ tide gauge data.

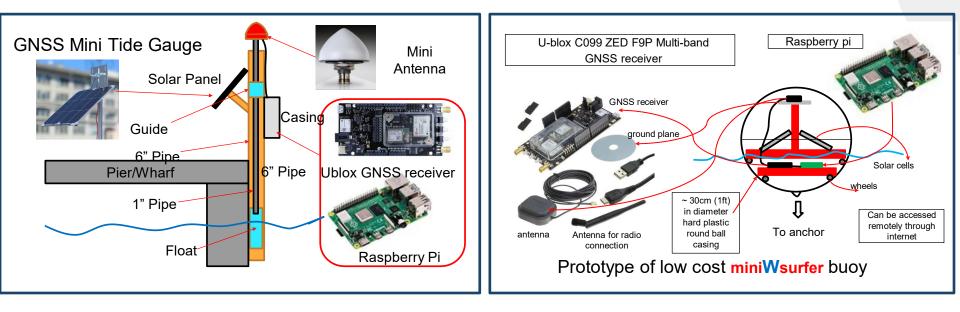

GNSS FLOAT TIDE GAUGE INSTALLATION

a) Float Tide Gauge Design

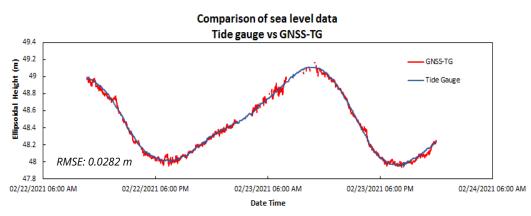


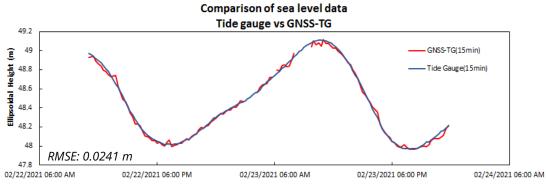
b) Control & Power Supply Panel

c) Actual installation of Float Tide Gauge at Manila Bay

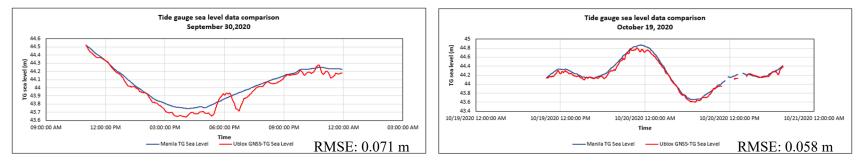

GNSS TIDE GAUGE BUOY

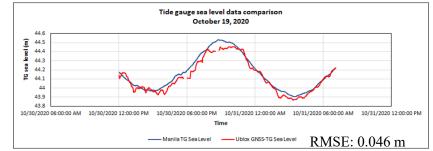
a) Buoy Tide Gauge Design


b) Buoy Tide Gauge


Schematic Diagram

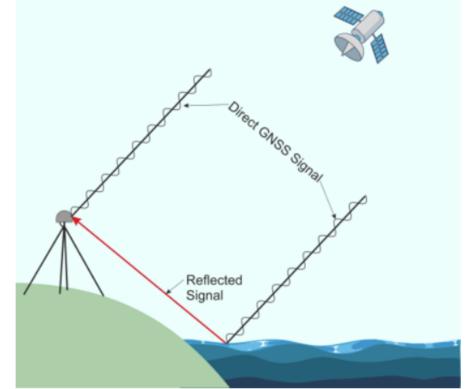
GNSS Float Tide Gauge





GNSS Tide Gauge Buoy

Plotted results of TG²NSS VS TGSL


CSLR Project: Conclusions

- 1. The TGs with long period of observations (more than 19 years) exhibit a sea level rise. The SA data also showed the same trend.
- 2. In Manila Bay where sea level rise is accelerating at 14.4 mm/year. The influence of VLM is very minimal at -1 mm/year (~5 yrs data). This means that there are other factors contributing to the sea level increase.
- 3. The low-cost GNSS tide gauge showed promising results as its post processed solutions showed an average of around 5 cm compared with the TG sea level observed using Radar sensor. Continuously improving the design.

CLSR Project Published Research Papers

- ✓ Rise Or Fall? How Local Factors Influence Coastal Sea Level in The Philippines
- ✓ Influence of the El Niño Southern Oscillation to the Interannual Sea-level Variability in the Philippine Sea
- ✓ Local Tide and Geoid Corrections Significantly Improve Coastal Retracked Jason Sea Surface Heights in the Philippines
- Estimation of Net Absolute Sea Level Change in Mogpog, Marinduque Using Persistent Scatterer Interferometric Synthetic Aperture Radar-derived Vertical Land Motion and Tide Gauge Measurements.
- ✓ Quantifying Vertical Land Motion at Tide Gauge Sites Using Permanent Scatterer Interferometric Synthetic Radar and Global Navigation Satellite System Solutions

ĴÿûÿyijħfijĂDĦĻĻ Ê

The GNSS-IR is a technique that uses signals from GNSS satellites reflected off surfaces, such as the surface, to make ocean measurements. When applied to tide gauge measurements, GNSScan provide valuable IR information about sea surface height variations, complementing traditional tide gauge measurements.

Multipath caused by GNSS signals reflecting off a body of water. Image: Simon Williams

Feasibility

- •
- ✓ Input data: Data from co-located GNSS tide station from Cagayan De Oro.
- ✓ Raw data of 7 days (January 1 7, 2024) with interval of 1 and 30 secs.
- ✓ Converted from raw data to Rinex 2.11 or 3.04.
- ✓ Preliminary assessment using GNSS-IR Analysis Software (GIRAS), an opensource software developed by United States' National Oceanic and Atmospheric Administration (NOAA)

GIRAS

- is an open-source MATLAB-based software, with file reading, data analysis and data visualization tools.

GIRAS

Status

- It consist of 3 main modules & 5 submodules.

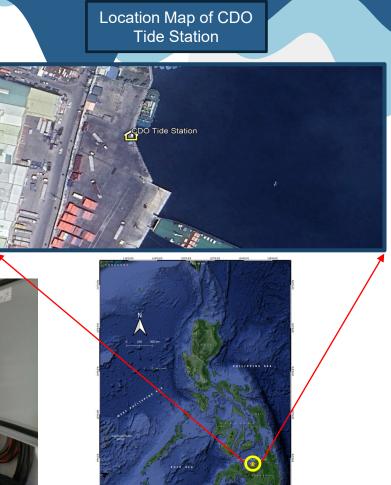
Read & con	Files		Settings
Pre-analysis	Observation files	Ephemeris files	Input type
Analysis			Raw file MAT file
About			Ephemeris file
			Navigation message OPrecise (.sp3)
			Process type
			 Just read & convert files
			Read & convert files and create SNRMAT f
			Station position
			● Use RINEX data O Manual
			X (m): 0.000
			Y (m): 0.000
			Z (m): 0.000
	Browse Clear	Browse Clear	
	0 observation files selected.	0 ephemeris files selected.	READ & CONVERT

GIRAS: GNSS-IR ANALYSIS SOFTWARE

https://geodesy.noaa.gov/gps-toolbox/GIRAS.shtml

MAT files

GIRAS 3 Main Modules & 5 Sub-Modules GIRAS: GNSS-IR ANALYSIS SOFTWARE Read & con... Files Settings - Read & convert files Pre-analysis Observation files Ephemeris files Input type Analysis Raw file MAT file About - Pre-analysis Ephemeris file Navigation message Precise (.sp3) - SNR & dSNR data Process type Just read & convert files Read & convert files and create SNRMAT files - Sky view GIRAS _ х Station position - First Fresnel Zone (FFZ) **GIRAS: GNSS-IR ANALYSIS SOFTWARE** (Use RINEX data X (m); Read & con. - Analysis SNRMAT file: Browse Y (m): Pre-analysis Z (m); Analysis SNR & dSNR data Sky view FFZ Clear - Make estimations About Satellites SNR types Plot data **READ & CONVERT** ephemeris files selected. SNR OdSNR - Improve estimations SNR/dSNR unit O Volts/Volts ⊙ dB 0 1 Time unit (Hours O Seconds କ୍ରି 0.6 Export plot Angle limitation S 0.4 90 GIRAS х 360 0.2 GIRAS: GNSS-IR ANALYSIS SOFTWARE 0.2 0.4 0.6 0.8 Read & con. Make estimations Improve estimations Epoch (seconds) Pre-analysis Files Settings Processing status Analysis SNRMAT files Satellite systems SNR data About All 🔻 GPS GALILEO Pol. deg. GLONASS BEIDOU 2 🖨 Angle limitation Elevation : [0 90] Azimuth : [0 180: 180 360] RUN Estimation settings Maximum reflector height (m) 5.000 Desired precision (m) 0.001 Browse Clear Filename : 0 SNRMAT files selected. Status

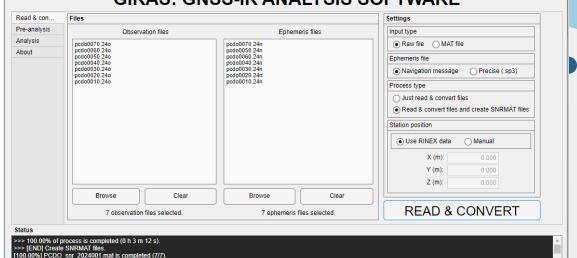

Àû ŭìħėfiji ĂDĦĻĻĂħijijĂļfġ∆ûưĂ

Cagayan De Oro Primary Tide Station - is located in Macabalan Port Cagayan De Oro City established in 2007 and operating 24/7. The tide station is made of concrete structure with dimension 2.1x1.9x2.95 m situated at Northern part of Macabalan Port.

OTT Tide Gauge and GNSS Receiver.

Main module 1: Read & convert files

承 GIRAS

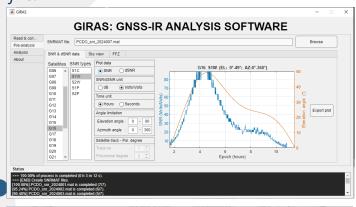

[95.24%] PCDO_snr_2024002.mat is completed (6/7) [90.48%] PCDO_snr_2024003.mat is completed (5/7)

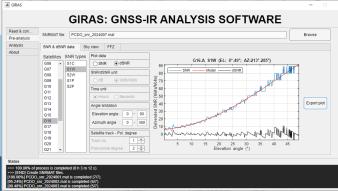
INPUT

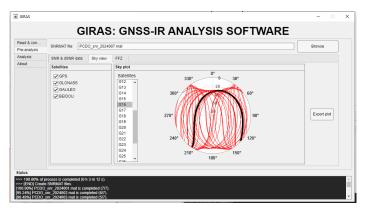
- GNSS raw data converted into RINEX 2.11 or 3.04 versions are supported as observation file.
- Broadcast ephemeris (navigation file) or precise ephemeris (sp3) files can be read to obtain orbit information.

OUTPUT

- In the process type both options will generate Matlab files containing Signal-to-ratio (SNR) of each satellite.




GIRAS: GNSS-IR ANALYSIS SOFTWARE


X

Main module 2: Pre-analysis

SNR & dSNR data - visualizes and pre-analyzes the SNR data from each satellite in the SNRMAT file.

GIRAS GIRAS: GNSS-IR ANALYSIS SOFTWARE Read & co SNRMAT file: PCDO snr 2024007.mat Browse Pre-analysi Analysis SNR & dSNR data Sky view FFZ About FFZ plo Reflector height : 6 482 Elevation angle 5 Data: S... v Number of satellite tracks : 65 Export plot 74.09 Distance from ellipse center Plot FFZ 510.14 Export KML rea of an FFZ ellipse (m^2) fotal FFZ area (m^2) : 33159.24 50 100 East (m

- Sky view

- prepares the sky plot for the satellites found in the SNRMAT file.

- provides the First Fresnel Zone (FFZ) graphic & quantities for observed satellites in the SNRMAT file.

Main module 3: Analysis

Make estimations

- SNRMAT files are selected first, then input the desired angle limitation and estimation settings.

🐼 GIRAS			- 0	× GIRAS		- 🗆 X
	GIRAS: GNS	S-IR ANALYSIS SO	TWARE		GIRAS: GNSS-IR	ANALYSIS SOFTWARE
Read & con	Make estimations Improve estimations			Read & con	Make estimations Improve estimations	
Pre-analysis Analysis	Files	Settings	Processing status	Pre-analysis Analysis	Estimation file : PCDO_results.mat	Browse
About	SNRMAT files	Satellite systems SNR data	>>> [END] ANALYSIS	About		
	PCDO_smr_2024001.mat PCDO_smr_2024002.mat PCDO_smr_2024003.mat PCDO_smr_2024004.mat PCDO_smr_2024005.mat	GLONASS GALILEO			Settings Quality analysis Min-Max frequency : [4 69]	Results 1 Min epoch Max epoch Num. of epochs Min elev. Mir 1994 44370 49020 155 3.4746 2.4 8529 =
	PCDO_snr_2024006.mat PCDO_snr_2024007.mat	Angle limitation Elevation : [0 25]			Minimum elevation angle range : 10	335 44370 48990 155 3.57.46 2.4.8529 3351 44370 48990 155 3.57.46 2.4.8529
		Azimuth : [0 90]			✓ 1 * Median Absolute Deviation (MAD) for f ▼	
		Estimation settings	RUN		Apply to O Daily data All data	🔰 🙀 🐨 Figure 1: Plot results - 🗆 🗙
		Maximum reflector height (m) : 6.482			Plotting	⁹⁶ ⁵¹ File Edit View Insert Tools Desktop Window Help
		Desired precision (m) : 0.001			X Data : Mean elevation annie	
	Browse Clear	Filename : PCDO_results			Y Data : Frequency V Deta :	
	7 SNRMAT files selected.					
>>> [END] ANALYS Analyzing PCDO_s Analyzing PCDO_s	ess is completed (0 h 0 m 40 s). IS MARE ESTBAATIONS m. 2024007 mail. (777) m. 2024008 mail (877) m. 2024008 mail (877)	The	output do not s	>>> [END] ANAL' Analyzing PCDO	xxxx is completed (2h 0 m 40 s). XISB WARE ESTIMATIONS str. 2202400 mail. (77) str. 2202400 mail. (87) str. 2202400 mail. (87) ESUIT. MAYbe due	
			bo following fact	forc:		Lagaret - T
		= 10 li	ie juliuwilig juci	015.		e l
		✓ 1	vrong configura	tion of GNSS recei	ver	6
			ntenna location			
						5
			levation mask			
		✓ n	nultipath mitigat	tion		4 Jan 01 Jan 02 Jan 03 Jan 04 Jan 05 Jan 06 Jan 07 Jan 08
		√ li	mited canability	/specification of r	eceiver	Epoch 2024
		✓ F.	rst Fresnel Zone	e coverage.		

Improve estimations

plot result.

- The result file is used as input. Final

settings will be input and display the

Ęֿיָקָ^{*} ijק**̆**^{*}לָּיַתוּ אָ*ׁ*

- Appropriate GNSS Receiver
- ✓ Set-up and configuration of GNSS Receiver
- Proper conversion of raw data to RINEX format
- Data processing techniques in particular multipath mitigation
- Lack of training, technology transfer needed

Ways Forward

- Continue research collaboration with the academe
 - Project proposal: Sea Level Monitoring using GNSS-IR
- Seek training on GNSS-IR data processing techniques
 - GIRAS, GNSS REFL Applications, etc.
- Procurement of new and upgraded multi-frequency GNSS Receivers
- Concept of GNSS Meteorology (?)

