United Nations / Philippines Workshop on the Applications of Global Navigation Satellite Systems Manila, Philippines, 22.- 26. April, 2024

PROBABILITY-OF-OCCURRENCE MODEL FOR GNSS PNT UTILISATION RISK ASSESSMENT FACILITATES GNSS APPLICATION DEVELOPMENTS IN THE FIELDS OF AVIATION AND MARITIME

Nenad Sikrica¹, Renato Filjar^{1,2}

¹Krapina University of Applied Sciences, Krapina, Croatia ¹Faculty of Engineering, University of Rijeka, Rijeka, Croatia

- Content of presentation
- Introduction
- Hypothesis
- Material
- Method
- Concept/method demonstration
- Discussion
- Conclusion

- Introduction
- Global Navigation Satellite System (GNSS) as a component of national infrastructure & application enabler
- GNSS PNT performance presented for ideal case of utilisation
- GNSS applications requires GNSS positioning performance description -> embedded in GNSS application Quality of Service (QoS)
- What is the risk of GNSS positioning performance failure in the provision of positioning performance (accuracy) required by GNSS application?

- Research hypothesis
- Sufficiently large dataset reflects the long-term statistical behaviour of GNSS positioning errors + proportional frequency of appearance of disturbing events -> a probabilistic model of the risk of GNSS positioning accuracy failure to meet the QoS requirements of a specific GNSS application

- Material (1/2)
- The sufficiently large dataset is available that reflects the long-term statistical behaviour of GNSS positioning errors
 -> continuous GNSS pseudorange observations at reference stations of International GNSS Service (IGS)
- This research utilises 365 days of GNSS pseudorange observations at Iqualuit, Canada
- The case of single-frequency GPS positioning errors, derived from GPS pseudorange observations, as observed in polar regions (Iqualuit)

- Material (2/2)
- Statistical analysis of horizontal GPS positioning error of a commercial-grade single-frequency GPS receiver

- Method (1/2)
- A single-function probabilistic model of the risk of GNSS positioning accuracy failure to meet the QoS requirements of a specific/targeted GNSS application -> Probability of Occurrence (PoO) model
- GPS/GNSS Probability of Occurrence (PoO) risk index is defined based on empirical identification of the GPS/GNSS positioning degradation

- Method (2/2)
- **Probability density function** $f_x(x)$ of statistical variable X

$$F_X(x) = P(X = x), F : \mathbb{R} \to [0,1]$$

 Cumulative distribution function (CDF) F_x(x) is defined as the function that returns the probability that X will acquire the value less then, or equal to x

$$F_X(x) = P(X \le x), F : \mathbb{R} \to [0,1] = \int_{-\infty}^x f_X(x) dx$$

 Complementary cumulative distribution function (CCDF), or tail distribution, is derived from the cumulative distribution function

$$\overline{F}_{X}(x) = P(X > x) = 1 - F_{X}(x)$$

Source: https://en.wikipedia.org/wiki/Probability_d ensity_function

PDF

Source: https://en.wikipedia.org/wiki/Cumulative_d istribution_function

CDF

Source:

https://en.wikipedia.org/wiki/Cumulative_d istribution_function#Complementary_cumu lative_distribution_function_(tail_distributi on)

CCDF

- Concept/method demonstration
- Scenario: polar regions, single-frequency commercialgrade GPS receiver, GPS application with defined QoS
- PoO GPS risk model developed on GPS postioning error estimates derived from experimental GPS pseudorange observations in polar region in 2014

$$P_{risk} = f(requested horizontal accuracy)$$

- Concept/method demonstration
- A specific GPS-based application should define its request for the highest acceptable horizontal GPS positioning error
- Example: GPS application requires that GPS positioning error should not exceed 5 m

GPS horizontal positioning error [m]

Report on Maritime, Inland Waterways, **Fisheries and Aquaculture**

User Needs and Requirements

#EUSpace

Source:https://www.euspa.europa.eu/sites/default/files /report_on_maritime_user_needs_and_requirements.p df

PoO for horizontal error > 5 m, general

Table 90: e-GNSS performance requirements for autonomous vessels according to survey results.

Performance parameter	Oceanic deep-sea navigation	Coastal navigation
Horizontal accuracy 95%	<15m	<5m
Continuity (over 15 minutes)	1·1x10 ⁻⁵	1·1x10 ⁻⁶
AL	<28m	<12,5m
ATT	<8s	<6s
Integrity risk	1·1×10 ⁻⁶	1·1x10-7
Availability	99.8%	99.8%

222	Typical operation	Accuracy horizontal 95% (Notes 1 and 3)	Accuracy vertical 95% (Notes 1 and 3)	Integrity	Time-to- alert	Continuity	Availability		PoOt	for horizon	tal error > {	5 m, gener	ral
	En-route	3.7 km (2.0 NM)	N/A	1 – 1 × 10 ⁻⁷ /h	5 min	$1 - 1 \times 10^{-4}/h$ to $1 - 1 \times 10^{-8}/h$	0.99 to 0.99999	nce [%] 80 100					
	En-route, Terminal	0.74 km (0.4 NM)	N/A	1 – 1 × 10 ⁻⁷ /h	15 s	1 – 1 × 10 ⁻⁴ /h to 1 – 1 × 10 ⁻⁸ /h	0.99 to 0.99999	of occurre 40 60					
Report on Aviation and Drones	Initial approach, Intermediate approach, Non-precision approach (NPA), Departure	220 m (720 ft)	N/A	1 – 1 × 10 ⁻⁷ /h	10 s	1 – 1 × 10 ⁻⁴ /h to 1 – 1 × 10 ⁻⁸ /h	0.99 to 0.99999	probability 0 20	2	4	6	8	
User Needs and Requirements	Approach operations with vertical guidance (APV-I)	16.0 m (52 ft)	20 m (66 ft)	1 – 2 × 10 ⁻⁷ in any approach	10 s	1 – 8 × 10⁻⁵ per 15 s	0.99 to 0.99999			GPS horizont	al positioning	nioi (mj	
	Approach operations with vertical guidance (APV-II)	16.0 m (52 ft)	8.0 m (26 ft)	1 – 2 × 10 ⁻⁷ In any approach	6 s	1 – 8 × 10 ⁻⁶ per 15 s	0.99909 0.999999						
	Category I precision approach (Note 7)	16.0 m (52 ft)	6.0 m to 4.0 m (20 ft to 13 ft) (Note 6)	1 – 2 × 10 ⁻⁷ In any approach	6 s	1 – 8 × 10 ⁻⁶ per 15 s	0.99 to 0.99999						

Figure 3: GNSS signal in space performance requirements - ICAO Annex 10 Vol I

Table 3: Nav equipment (GNSS receiver) performance requirements for Drone en-route PBN⁹

Operation	Hor (m) NSE(95%)	Ver (m) NSE(95%)	Integrity ¹⁰	TTA (s)	Alert limits (m)	Continuity	Availability
SAIL 3	3 - 8	4 - 13	1 -1E-4 /h	1-3	HAL: 25 -27 (fixed wing) 10 - 14 (rotary) VAL: 12 - 22 (fixed wing) 7 - 23 (rotary)	1 - 1E-4 /h	0.9999
SAIL 4	3 - 8	4 - 13	1 -1E-5 /h	1 - 3	HAL: 25 -27 (fixed wing) 10 - 14 (rotary) VAL: 12 - 22 (fixed wing) 7 - 23 (rotary)	1 - 1E-4 /h	0.9999

NOTE: The performance characteristics presented in this table are sufficient to deliver navigation performance equivalent to a RNP 26/16 m for fixed wing and RNP 12/14 m for rotorcraft due to improved FTE for rotorcraft

Source:

https://www.euspa.europa.eu/sites/default/files/report _on_aviation_and_drones_user_needs_and_requiremen ts.pdf

- Discussion
- The proposed method, and PoO model demonstrated in the proof-of-principle scenario, may be generalised towards any positioning indicator requested, as well as to utilisation multiple GNSS position estimation.
- GPS application operator and user may consider implementation and operation of a redundant positioning system in a confined area (port) to overcome the risk, or the utilisation of integrated navigation (for example, GPS+INS), for the period of degraded GPS positioning performance.

- Conclusion
- This research proposes a single-function probabilistic model of the risk of GNSS positioning accuracy failure to meet the QoS requirements of a specific/targeted GNSS application -> Probability of Occurrence (PoO) model

- Recommendations
 - 1. Consideration of development & utilisation of a method of the Probability of Occurrence (PoO) model of GPS/GNSS application utilisation, especially in aviation and maritime.
 - 2. Assemblage of a year-long massive databases of GPS positioning errors presented in the open-source access manner.
 - 3. Fulfillment of, and support to, UN Sustainable Development Goals.
 - 4. Facilitation of international collaboration of GNSS PNT performance observation collection and risk analysis in various conditions of use, applications, and influencing phenomena.
 - 5. Utilisation of open source framework, such as R, for PoO model development and validation

APPRECIATE YOUR ATTENTION!

with a cordial invitation to: **BAŠKA SIF MEETING 2024 Baška, Krk Island, Croatia** 16 – 18 June, 2024

(baskasif24@gmail.com)

Mr Nenad Sikirica

University of Applied Sciences Hrvatsko Zagorje Krapina, Krapina, Croatia E-mail: <u>nsikirica@vhzk.hr</u>