

On the Non-force-free Magnetic Field and Solar Eruptions

ZHU Xiaoshuai (朱小帅)

(zhuxiaoshuai@nssc.ac.cn)

Key Laboratory of Solar Activity and Space Weather National Space Science Center, Chinese Academy of Sciences

Solar eruption and its impact

- Solar eruptive events: coronal mass ejections (CMEs)
 - ✓ 10^{11} - 10^{13} kg plasma along with magnetic field expelled from the Sun
 - ✓ Harmful effects: disturbances in communication system, damages on satellites, power cutoffs, etc.

Key Factor: Magnetic Field

Neustrelitz, Germany

- Basis of solar magnetic field extrapolation
- The analytical non-force-free magnetic field extrapolation
- The numerical non-force-free magnetic field extrapolation
- Applications to Solar Eruption Studies
- ISSI & ISSI-BJ international team

Basis of the magnetic field extrapolation

• Characteristic of the solar atmosphere

✓ Widely used in research studies

 \checkmark

Some applications

- Basis of solar magnetic field extrapolation
- The analytical magneto-hydro-static extrapolation
- The numerical magneto-hydro-static extrapolation
- Applications to Solar Eruption Studies
- ISSI & ISSI-BJ international team

In this talk: Magneto-hydro-static extrapolation = non-force-free field extrapolation

The analytical MHS extrapolation

B

Jı

Gravitational force

Form Neukirch's talk

BC Low (1985,1991):
$$\nabla \times B = \frac{\alpha e^{-\kappa z} \nabla B_z \times e_z}{(j_{\perp})} + \frac{\alpha B}{(j_{\parallel})}$$

Analytical solution:

$$\begin{split} \frac{d^2 \tilde{B}_z}{dz^2} + &\{\alpha_0^2 + (h^2 + k^2)[f(z) - 1]\}\tilde{B}_z = 0\\ \tilde{B}_x &= \frac{1}{h^2 + k^2} \left(ih \, \frac{d\tilde{B}_z}{dz} + ik\alpha_0 \, \tilde{B}_z\right)\\ \tilde{B}_y &= \frac{1}{(h^2 + k^2)} \left(ik \, \frac{d\tilde{B}_z}{dz} - ih\alpha_0 \, \tilde{B}_z\right)\\ p &= p_0(z) - \frac{1}{8\pi} \, f(z) B_z^2 \,,\\ \rho &= -\frac{1}{g} \, \frac{dp_0}{dz} + \frac{1}{4\pi g} \left[\frac{1}{2} \, \frac{df}{dz} \, B_z^2 + f(\boldsymbol{B} \cdot \boldsymbol{\nabla}) B_z\right] \end{split}$$

e.g. Low 1985, 1991 1992, 1993, 2005; Bogdan & Low 1986; Neukirch 1995, 1997, 1999; Neukirch & Rastatter 1999; Petrie & Neukirch 2000; Al-Salti et al. 2010; Gent et al. 2013; MacTaggart et al. 2016; Wilson & Neukirch 2018; Neukirch & Wiegelmann 2019

An application

Inputs	LOS magnetogram	<mark>ه</mark> (control the strength of Lorentz force)	م (control the linear force-free electric current)	<mark>ہ</mark> (determine the height of the non- force-free layer)
	From observation	Free parameter	Free parameter	Free parameter

Pressure disturbance

Wiegelmann et al. 2015

- Advantages: Fast
- Disadvantages: can't resolve the nonlinear feature

- Basis solar magnetic field extrapolation
- The analytical magneto-hydro-static extrapolation
- The numerical magneto-hydro-static extrapolation
- Applications to Solar Eruption Studies
- ISSI & ISSI-BJ international team

In this talk: Magneto-hydro-static extrapolation = non-force-free field extrapolation

The numerical MHS extrapolation

- MHD relaxation method (Zhu et al. 2013, 2016; Miyoshi et al. 2020)
 - ✓ Drive the MHD system by slowly inject the vector magnetogram

$$\boldsymbol{j} \times \boldsymbol{B} - \nabla p + \rho \boldsymbol{g} = 0$$
$$\boldsymbol{\nabla} \times \boldsymbol{B} = \boldsymbol{\mu}_{0} \boldsymbol{j}$$
$$\nabla \cdot \boldsymbol{B} = 0$$

- Grad-Rubin method (Gilchrist & Wheatland 2013; Gilchrist et al. 2016)
 - Hyperbolic part for evolving p and σ
 - ✓ Elliptic part for evolving B

$$\nabla \tilde{p}^{[k+1]} \cdot \mathbf{B}^{[k]} = \left[\frac{p_0(z)}{H_0(z)} - \frac{p_0(z) + \tilde{p}^{[k+1]}}{H(\mathbf{r})} \right]$$
$$\nabla \sigma^{[k+1]} \cdot \mathbf{B}^{[k]} = -\nabla \cdot \mathbf{J}_{\perp}^{[k+1]},$$
$$\nabla \times \mathbf{B}^{[k+1]} = \mathbf{J}^{[k+1]},$$
$$\nabla \cdot \mathbf{B}^{[k+1]} = 0,$$

 $B_z^{[k]}$

- Optimization method (Wiegelmann & Neukirch 2006; Zhu & Wiegelmann 2018, 2019, 2022)
 - ✓ Minimize functional defined by the MHS equations $L = \int_{V} \left[\frac{B^2}{B^2 + p} | (\nabla \times B) \times B - \nabla p - \rho g \hat{z} |^2 + |\nabla \cdot B|^2 \right] dV$

Inputs for the application

Force-free-field extrapolation (nonlinear):

Numerical MHS extrapolation:

Inputs	Vector magnetogram	Plasma pressure in the photosphere	Temperature in the 3D domain	Inputs
	From observation	By assumption	By assumption	

Analytical MHS extrapolation:

Inputs	LOS magnetogram	<i>a</i> (control the strength of Lorentz force)	α (linear force-free electric current)	۲ (determine the height of the non- force-free region)
	From observation	Free parameter	Free parameter	Free parameter, usually set to 2 km

Tests

Miyoshi et al. 2020

- Basic of solar magnetic field extrapolation
- The analytical magneto-hydro-static extrapolation
- The numerical magneto-hydro-static extrapolation
- Applications to Solar Eruption Studies
 - ✓ White-light flare
 - ✓ Blowout jet
 - ✓ Global magnetic structure in the corona
- ISSI & ISSI-BJ international team

White-light flare

- 2012 May 10th, 04:18 UT
- AR11476, M5.7 flare
- Magnetic structure: Fan-Spine
 + flux rope

Blowout jet

(a) AIA193 2012-07-02T20:11:31

Evolution in EUV wavelengths

ZHU et al. 2017

Reproduce the process by extrapolation?

Standard Model

2024/06/10

Neustrelitz, Germany

Blowout jet

MHS extrapolation shows the blowout jet is caused by the blowing out of the magnetic flux rope at the source region

Global magnetic structure of the corona

• The analytical MHS extrapolation during total solar eclipse

Yeates, et al. 2018

- Basis of solar magnetic field extrapolation
- The analytical magneto-hydro-static extrapolation
- The numerical magneto-hydro-static extrapolation
- Applications to Solar Eruption Studies
- ISSI & ISSI-BJ international team

Cooperation: ISSI/ISSI-BJ international team

Magnetohydrostatic Modeling of the Solar Atmosphere with New Datasets

ISSI Team led by Zhu Xiaoshuai & Chifu Iulia

٠

Team member	Affiliation	
Xiaoshuai Zhu	NSSC, China	
Iulia Chifu	Univ. of Goettingen, Germany	
Thomas Neukirch	Univ. of St Andrews, UK	
Mike Wheatland	Univ. of Sydney, Australia	
Thomas Wiegelmann	MPS, Germany	
Takahiro Miyoshi	Hiroshima Univ., Japan	
Jie Zhao	PMO, China	
Yongliang Song	PMO, China	
Xianyong Bai	NAOC, China	
Ricardo Gafeira	Univ. of Coimbra, Portugal	
Lilli Nadol	Univ. of St Andrews, UK	
Daiki Yamasaki	JAXA, Japan	

- Task 1: Evaluate different MHS extrapolation techniques with known 3D reference models (both analytical and numerical). Identify problems in the modeling and make updates;
- Task 2: Evaluate different MHS extrapolation techniques with DKIST (or GST, SST, IMaX/SUNRISE) photospheric vector magnetogram of an active region;
- Task 3: Use coronal images from multi-angle observations (EUI and AIA on board SolO and SDO, respectively) to constrain the magnetic field modeling.

First team meeting at ISSI-Beijing in July 2023

Thank you for your attention!