

MATIETEEN LAITOS ETEOROLOGISKA INSTITUTET NNISH METEOROLOGICAL INSTITUTE

Space Weather Impact on Polar Atmospheric Ozone and Climate

P. T. Verronen^{1,2}

¹Sodankylä Geophysical Observatory, University of Oulu, Finland ²Space and Earth Observation Centre, Finnish Meteorological Institute, Finland

10 June 2024

1/

Energetic particle precipitation (EPP) - Atmospheric effects

The concept: particles ionize middle atmosphere, leading to an ozone response.

https://doi.org/10.5194/angeo-39-883-2021, 2021

Top-down atmospheric coupling - role of EPP?

1/

Connection between

- solar influence
- ozone and temperature
- winds and waves

For EPP, major atmospheric response

- in polar regions
- during winter months
- by polar vortex modulation

Courtesy of: M. E. Szeląg, Finnish Meteorological Institute

、レ 「い」 UNIVERSITY OF OULU

EPP impact on polar vortex dynamics

Winter pole

- Less waves disturbing the polar vortex and therefore stronger vortex
- Anomalously strong polar vortex in late winter, would lead to positive Northern Annular Mode anomalies.

 DJF: for high geomagnetic activity levels more planetary waves are refracted towards the equator, away from the polar region

Figure from: Seppälä et al., 2013

Proposed EPP influence on North Atlantic Oscillation (NAO)

ראין UNIVERSITY OF OULU

Regional wintertime anomalies related to the variability of NAO

N

NAO is a climate pattern, a natural form of climate variability

It depends on the strength of pressure difference between high and mid latitudes

And modulates the Atlantic Jet Stream.

It's connected to polar vortex strength.

So, when EPP is strong :

- stronger polar vortex
- positive anomaly of North Atlantic Mode?

Proposed EPP influence on regional climate

Surface Air Temperature responds to particle precipitation activity

ERA-40 data, from Seppälä et al., J. Geophys. Res., 2009

Regional wintertime anomalies similar to NAO patterns

Figure: Temperature difference between years of high and low EPP.

- A solar cycle effect.
- From a 40-year data set.
- T variability up to ± 5 K.

N

Surface temperature impact from EPP is currently underestimated in simulations!

^J UNIVERSITY OF OULU

Observations: ±5 K

Figure from: Seppälä et al., J. Geophys. Res. (2009).

Simulation: ±1 K

Figure from: Rozanov et al., Surv. Geophys. (2012).

Medium-energy electrons (MEE) - key importance?

UNIVERSITY OF OULU

N

- Contribution of all EPP should included for the assessment of decadal effects
- Major part of direct D-region comes from SPEs and MEE (E > 30 keV)
- Useful MEE flux observations
 - are available from MEPED/POES satellites
 - cover a period between 1998 present
 - suffer from the measurement geometry and proton contamination

nature communications

Article

0

https://doi.org/10.1038/s41467-022-34666-y

Ozone impact from solar energetic particles cools the polar stratosphere

Our CESM / WACCM model

Rozanov et al., 2012

012

Andersson et al., 2018

- chemistry-climate model SOCOL
- 46-year long runs
- NO_x increase of about 50% visible down to about 26 km in SH
- O_3 depletion by up to 12%

- WACCM model
- 3x50-year long runs
- NO_x increase of about 20-40% visible down to about 30 km
- O_3 depletion by up to 7%

Statistical study from reanalysis

data: ERA-40 Reanalysis (1957-

2002) and ECMWF Operational

Lu et al. J. Geophys. Res. (2008)

analyses (2002-2006)

Previously: EPP (Ap) impact on polar stratospheric T in NH

Geomagnetic perturbations on stratospheric circulation in late winter and spring: high-low

Conclusion: Temperature changes are not from ozone depletion but dynamical

Chemical and dynamical heating

1/

QRS = shortwave heating, **QRL** = longwave cooling, **w*** = vertical wind anomaly

Repeating CMIP5 simulations, but with Ap-MEE

An ensemble simulation: 36 years of high EPP, 33 years of low EPP

- CMIP5 setup (compset "B55TRWCN"), active ocean and sea ice components.
- The observed forcings:
 - radiatively active species at surface
 - daily solar spectral irradiance
 - volcanic sulfate heating,
 - Quasi-Biennial Oscillation (QBO).
- Interactive chemistry, free running dynamics.
- 5-ion chemistry for the thermosphere (no D-region chemistry). \Rightarrow HO_v/NO_v production parameterized.
- CMIP6 recommendation of EPP included.
 - Daily mean, zonal mean ionization

Response in the SH polar region (high EPP - low EPP)

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Sensitivity simulations with controlled EPP

Year 2000 repeated, **50-year simulation sets**, constant EPP, free-running dynamics

Set	Description	Ар	Кр	F10.7/F10.7a	MEE
FW ^{max}	high solar irradiance, high EPP	27	4	210/210	10 × 2003 mean
FW ^{min}	low solar irradiance, low EPP	1	0.1	40/40	-

Note increased EPP: to match the amount of stratospheric NOy seen in MIPAS satellite-based observations.

Temporal evolution of the EPP-NO_v from MIPAS

N

Sensitivity experiment: EPP impact (FW^{max} - FW^{min})

EN LAITOS .OGISKA INSTITUTET METEOROLOGICAL INSTITUTE

Summary: space weather and regional climate variability

Space weather activity affects atmospheric ozone and has potential implications for tropospheric climate.

Connection between ozone, polar vortex dynamics, and ground-level regional climate variability has been proposed.

Open questions about the dynamical response that propagates to the troposphere.

Solar energetic particle precipitation (EPP) is not yet considered in most climate models.

Observations show +/-5 degree **decadal variability in ground-level temperatures**, driven by solar EPP activity.

Understanding the related **coupling mechanisms from upper to lower atmosphere and climate** is one of the **grand challenges** in solar-terrestrial science today.

It is **essential to know the natural climate variability**, so that we can accurately **assess the human influence on climate** on regional and decadal scales.

In the context of the global warming and the stratospheric ozone recovery, addressing this grand challenge directly supports the work of Intergovernmental Panel on Climate Change (IPCC).