Variations in the ionospheric parameters over midlatitude Europe region during September 6 – 10, 2017 geomagnetic storm caused by coronal mass ejections

Aksonova K.D.1,2, Panasenko S.V.1, Burešova D.2, Kotov D.V.1, Reznychenko M. O.1,3

1Ukraine Institute of Atmospheric Physics of the Czech Academy of Science, Prague, Czech Republic
2Institute of Ionosphere, Kharkiv, Ukraine
3Space Research Centre of Polish Academy of Sciences, Warsaw, Poland
Geomagnetic storms (GS) significantly affect ionospheric variability and state of ionization. The irregular processes occurring in the ionosphere exert influence on modern HF technologies both in outer space, for example, on satellites, and on Earth-based infrastructures such as radars, navigation systems and radio communications. Therefore, understanding and modeling the effect of GS on variations of various ionospheric parameters is extremely important for applied purposes.

This study presents the response of the European midlatitude ionosphere on the intense GS of September 6 – 10, 2017. The key point is that this GS was caused by coronal mass ejections (CMEs) with a full-halo on September 6. Another important aspect is that the aurora oval extended to lower latitudes during the analyzed period.
Space weather conditions

Figure 1. Time series of (a) D_{st} and K_p geomagnetic activity indices, (b) the IMF B_z and B_y components, (c) magnitude of B component of the IMF and IEF E_y, (d) solar wind speed V and AE index, (e) pressure P and temperature T during the period of 6 - 10 September 2017.

(https://omniweb.gsfc.nasa.gov/form/dx1.html)
Space weather conditions

Figure 1. Time series of (a) D_{st} and K_p geomagnetic activity indices, (b) the IMF B_z and B_y components, (c) magnitude of B component of the IMF and IEF E_y, (d) solar wind speed V and AE index, (e) pressure P and temperature T during the period of 6 - 10 September 2017.

(https://omniweb.gsfc.nasa.gov/form/dx1.html)
Figure 1. Time series of (a) D_{st} and K_p geomagnetic activity indices, (b) the IMF B_z and B_y components, (c) magnitude of B component of the IMF and IEF E_y, (d) solar wind speed V and AE index, (e) pressure P and temperature T during the period of 6 - 10 September 2017. (https://omniweb.gsfc.nasa.gov/form/dx1.html)
Figure 1. Time series of (a) D_{st} and K_p geomagnetic activity indices, (b) the IMF B_z and B_y components, (c) magnitude of B component of the IMF and IEF E_y, (d) solar wind speed V and AE index, (e) pressure P and temperature T during the period of 6 - 10 September 2017. (https://omniweb.gsfc.nasa.gov/form/dx1.html)
Kharkiv incoherent scatter (IS) radar

Geographic coordinates: 49.6°N, 36.3°E
Antenna: 100-m fixed, zenith-directed
Operating frequency: 158 MHz
Measured parameters: The height profiles of electron (T_e) and ion (T_i) temperature, variations in the F2 peak electron density ($NmF2$), height ($hmF2$) and critical frequency ($foF2$), a vertical component of the plasma motion velocity, ion composition, IS power data.
Height resolution: for IS power - 20 km, for T_e, T_i and ion composition - 100 km

The calibration of electron density profiles is performed using ionosonde located in the vicinity of the IS radar. The main parameters of the ionosonde are the following: the transmitter pulse power is up to 1.5 kW, the pulse length is 100 μs, the frequency range is 1–16 MHz, and the repetition frequency is 125 Hz. Error in $foF2$ determining is no more than 0.05 MHz.
Results

Figure - Variations in T_e, $NmF2$ and $hmF2$ during the period of 6–10 September 2017 observed over Kharkiv.
Results

Figure - Variations in T_e, $NmF2$ and $hmF2$ during the period of 6–10 September 2017 observed over Kharkiv.
Results

Figure - Variations in T_e, $NmF2$ and $hmF2$ during the period of 6–10 September 2017 observed over Kharkiv.
Results

Figure - Variations in T_e, $NmF2$ and $hmF2$ during the period of 6–10 September 2017 observed over Kharkiv.
Results

Figure - Variations in \(Te \), \(NmF2 \) and \(hmF2 \) during the period of 6–10 September 2017 observed over Kharkiv,\(_{12} \)}
For determining the TID vertical propagation parameters (vertical phase velocity V_z and wavelength λ_z), we used cross-correlation analysis. In this case, the value of V_z is estimated using approximation of time lag or advances for oscillations at a number of altitudes relative to fluctuations at a specific altitude (200 km). Then $V_z = \frac{dz}{d\tau} \approx \frac{\Delta z}{\Delta \tau}$, where Δz is a difference between two adjacent altitudes; $\Delta \tau$ is difference between time advances or lags for these altitudes; $\lambda_z = V_z T$.

Fig. – Stages of data analysis:

a) IS power P values (red) with trend (black dotted line);

b) absolute variations ΔP;

c) relative variations δP;

d) 60 – 120 min band-pass filtered of δP;

e) energy periodogram δS_P;

f) altitude-time dependence of 5 – 125 min and 60 – 120 min band-pass filtered variations of δP;

g) altitude profiles of relative amplitudes
Results

Figure - Amplitude spectra of relative variations in IS signal power δP at the altitude of 200 km (top panel) and altitude-time dependence of δP band-pass filtered in the range of 120 – 240 min (bottom panel).
Figure - Amplitude spectra of relative variations in IS signal power δP at the altitude of 200 km (top panel) and altitude-time dependence of δP band-pass filtered in the range of 120 – 240 min (bottom panel).
TIDs parameters:

- Dominant periods: $150 - 180$ min
- Maximum values of δP vary from 14 to 30%
- $h_{\text{max}} = 200 - 225$ km
- $V_z = 35 - 50$ m/s and $\Lambda_z = 250 - 400$ km.
Results

TID parameters:
- Dominant periods: 150 – 180 min
- Maximum values of δP vary from 14 to 30%
- $h_{max} = 200 – 225$ km
- $V_z = 35 – 50$ m/s and $\Lambda_z = 250 – 400$ km.
In this study we analyzed the ionospheric behavior over midlatitude European region during the period of intense geomagnetic storm 6 – 10 September 2017, caused by CMEs. A strong increase of $NmF2$ accompanied by a sharp Te decrease and significant $hmF2$ uplift were found. It was revealed that a sharp spike in Te associated with the minimum of Dst – index. Whereas, along with a sharp decrease in Te, there was an increase in $NmF2$ to about 5000 K and $hmF2$ by 65 km.

In addition, LSTIDs with the periods of 120 – 240 min as well as their vertical parameters were estimated. Intense fluctuations were observed in the morning and evening hours, which indicated the solar terminator as the most likely additional source of their generation.
Thank you for your attention!