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Forecasting has always been
a powerful tool

We have honed this ability first in the eons of the biological
evolution, then encoding it in our culture, ‘recently’ by applying
the scientific method to our everyday life problems.

The mathematical tools to understand why some events are more
difficult to forecast than others.

The development in the last decades in sciences of complex
systems and statistics have allowed us to better define the limits
of predictability and - often- fo extend those limifs.

BUT! The robust forecast of flare eruptions still escapes us.

And also the apparently simpler problem of the propagation of @
coronal mass ejection in the interplanetary medium has not been
solved to the limit that we would like, while we fight with the
uncertainties associated with the boundary conditions.
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Scientific approach vs Machine Learning

» It is now feasible to compute the trajectory of plasma and magnetic field
stfructures under the MHD equations in domains as large as the
Heliosphere.
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» Or fry to predict -just by analyzing full disk images or the magnetograms-
whether a given solar Active Region will release part of its stored energy
as high energy photons and partficles, or shoot out a coronal mass
ejection. ceptic Plang, AT = 47

o S e Solar flares originate
FEp oy Blom e T from magnetically
' : ‘ active regions (ARs)
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Scientific approach vs Machine Learning

Standard Approach: Curve Fittin » Em pifiCOl, data-driven

Logarithm of the proton peak fluxes (E = 10 MeV ) vs CME speed LY 1
models and data fitting

now enrolled into ML...
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=1 per cycle

Machine Learning: Baiesian ,Rid?e
Logarithm of the proton peak fluxes (E = 10 MeV ) vs CME speed
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Papaioannou A, Sandberg |, Anastasiadis A, Kouloumvakos A, Georgoulis MK, Tziotziou K, Tsiropoula G,
Jiggens P, Hilgers A. Solar flares, coronal mass ejections and solar energetic particle event characteristics.
Journal of Space Weather and Space Climate. 2016;6:A42.
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Stumpo, M., Benella, S., Laurenza, M., Alberti, T., Consolini, G. and Marcucci, M.F., 2021. Open issues in V_CME [km)s]

statistical forecasting of solar proton events: A machine learning perspective. Space Weather, 19(10),
p.e2021SW002794.




Scientific approach vs Machine Learning

» Exact space weather predictions are prevented either by intrinsic limitations or by the
lack of knowledge about the present state.
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» To counter these limitations, we have come up with clever and clever numerical
techniques to solve the differential equations that typically describe our problems, and
ensemble methods [3,4] to cope with measure errors and unknown variables. We strive
to extract from remote measures all the relevant information [5], by applying our
understanding of the physics of the problem, 1o feed this information into our
forecasting algorithms.

» And we are getting better and better at this too. 4 A 952017 Isza21.3%

HMI Magnetogram 9-—Sep—2017 00:34:41.600
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Will a solar flare of or
above class Kbe generated
in the next Dt hours?




Scientific approach vs Machine Learning

» |n the absence of a definitive physical theory
explaining the mechanisms of an AR, the best
hope for forecasting solar eruptions lies in
finding an empirical relationship between
some well chosen features of ARs and the Selected Features' Scatterplots & Distributions
solar flares and CMEs. ”
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» As aconsequence, we have furned o the
dark side and applied the methods of this
hybrid of numerical methods, complex system
science and statistics which is usually referred
to as Machine Learning (ML).

Bobra, M. G., & Couvidat, S. (2015). Solar flare prediction using SDO/HMI vector magnetic field data with a
machine-learning algorithm. The Astrophysical Journal, 798(2), 135.

Florios, K., Kontogiannis, I., Park, S. H., Guerra, J. A., Benvenuto, F., Bloomfield, D. S., & Georgoulis, M. K.
(2018). Forecasting solar flares using magnetogram-based predictors and machine learning. Solar Physics,
293(2), 28. https://doi.org/10.1007/s11207-018-1250-4
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ML is cheap + ML evolves extremely fast

PARRARARSE

Disk-centre view #
overlaid on magnetogram e

Cheung, M. C. M., Rempel, M., Chintzoglou, G., Chen, F., Testa, P., Martinez-Sykora, J., ... & Mclntosh, S. W.
(2019). A comprehensive three-dimensional radiative magnetohydrodynamic simulation of a solar flare. Nature
Astronomy, 3(2), 160-166. https://doi.org/10.1038/s41550-018-0629-3
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Camporeale, E. (2019). The challenge of machine learning in space weather:

Nowcasting and forecasting. = Space
https://doi.org/10.1029/2018SW002061

weather,

17(8),

1166-1207.
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ML is cheap + ML evolves extremely fast
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Shiota, D., & Kataoka, R. (2016). Magnetohydrodynamic simulation of interplanetary propagation of multiple
coronal mass ejections with internal magnetic flux rope (SUSANOO-CME). Space Weather, 14(2), 56-75.
https://doi.org/10.1002/2015SW001308

Bobra, M. G., & llonidis, S. (2016). Predicting coronal mass ejections using machine learning methods. The
Astrophysical Journal, 821(2), 127. DOI 10.3847/0004-637X/821/2/127

Chierichini, S., Liu, J., Korsés, M. B., Del Moro, D., & Erdélyi, R. (2024). CME Arrival Modeling with Machine
Learning. The Astrophysical Journal, 963(2), 121. DOI 10.3847/1538-4357/ad1cee

non refereed
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ML: Quick, Nice results vs Correct

Dataset use

Neural Networks
SVM
Random Forest

Gaussian models Flare Forecast _
True Skill Score evolution:

Convolutional NN Barmnes 2008:

Florios 2018:
Sun 2022:
Deshmukh 2022:

Y V V V
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Barnes, G., & Leka, K. D. (2008). Evaluating the performance of solar flare forecasting methods.
The Astrophysical Journal, 688(2), L107. DOI 10.1086/595550

Florios, K., Kontogiannis, I., Park, S. H., Guerra, J. A., Benvenuto, F., Bloomfield, D. S., & Georgoulis, M.
K. (2018). Forecasting solar flares using magnetogram-based predictors and machine learning. Solar Physics,
293(2), 28. https://doi.org/10.1007/s11207-018-1250-4

Sun, Z., Bobra, M. G., Wang, X., Wang, Y., Sun, H., Gombosi, T., ... & Hero, A. (2022). Predicting solar
flares using CNN and LSTM on two solar cycles of active region data. The Astrophysical Journal, 931(2), 163.
DOI 10.3847/1538-4357/ac64a6

Deshmukh, V., Flyer, N., Van der Sande, K., & Berger, T. (2022). Decreasing false-alarm rates in CNN-
based solar flare prediction using SDO/HMI data. The Astrophysical Journal Supplement Series, 260(1), 9. DOI
10.3847/1538-4365/ac5b0c
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BEWARE: sometimes there
are errors in:

The hyperparameter tuning process

How the samples are used

How the cross-validation is used
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Flares: Nex

Iv\oré info from B — by using topological
describers

AL

. Add the Time dimension — use B movies

+ corona

i . Adapt the Loss Functions — redefine
A error types

. Explicability of Deep Learning — analysis of

. Higher layers info — use B + chromosphere

attention frames

Change of paradigm (e.g. Physics-Informed
ML, ...)
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Use of topological describers

Flare @ 0 & 1

YET another parameter from magnetic

polarity inversion lines (PILs)
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Topologically complex ARs are strongly
correlated to flare emissions.

kL 3 Hybrid Lasso, at least M1
Therefore a topological descriptor that

counts the number of separated PILs
fragments in the ARSs.

Feature ranking analysis tells us it is
extremely relevant to reach high skill
scores — it brings relevant
information on the AR flaring
potential.

descriptor

presence in top ten rankings

Cicogna, D., Berrilli, F., Calchetti, D., Del Moro, D., Giovannelli, L., Benvenuto, F., ... & Piana, M.
(2021). Flare-forecasting algorithms based on high-gradient polarity inversion lines in active
regions. The Astrophysical Journal, 915(1), 38. https://iopscience.iop.org/article/10.3847/1538-
4357 /abfafb



https://iopscience.iop.org/article/10.3847/1538-4357/abfafb

Analysis of time sequences

Long-term Recurrent Neural Network
LRCN = CNN + LSTM

BUT they get similar TSS values as more
standard methods

— HMI data do not contain enough
information?

— flares’ stochasticity hampers the
possibility of binary predictions, in
favor of a probabilistic prediction?

Guastavino, S., Marchetti, F., Benvenuto, F., Campi, C., & Piana, M. (2022).
Implementation paradigm for supervised flare forecasting studies: A deep learning
application with video data. Astronomy & Astrophysics, 662, A105.
https://doi.org/10.1051/0004-6361/202243617

Campi, C., Benvenuto, F., Massone, A. M., Bloomfield, D. S., Georgoulis, M. K., &
Piana, M. (2019). Feature ranking of active region source properties in solar flare
forecasting and the uncompromised stochasticity of flare occurrence. The Astrophysical
Journal, 883(2), 150. DOI 10.3847/1538-4357/ab3c26

.-I —_ Feature

CNN CNN ses CNN

Input: videos of HMI magnetograms

extraction
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Use of more layers

magnetogram

Each layer used contributes to

improved performances

Models combining SDO/AIA EUV images
as inputs show improved 2D- CNN Block
performances compared to
employing SDO/HMI photospheric
magneftograms alone

Francisco, G., Berretti, M., Chierichini, S., Mugatwala, R., Fernandes, J. M., Barata, T., & Del
Moro, D. (2024). Limits of solar flare forecasting models and new deep learning approach. Authorea
Preprints. DOI: 10.22541/ess0ar.170688972.24631782/v2
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Redefine error types/Performance Scores

Classical skill scores do not take
into account the temporal
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distribution of the prediction

A possible solution:

e predicted
B event

Prediction

define new skill scores which allow
ranking the prediction errors on the
basis of their distribution along time

e predicted
Bl eyent

Prediction

[ [l 20 N

Two forecasts: same performance, but totally different

predictive value.

Guastavino, S., Piana, M., & Benvenuto, F. (2022). Bad and good errors: Value-
weighted skill scores in deep ensemble learning. |IEEE transactions on neural
networks and learning systems. DOI: 10.1109/TNNLS.2022.3186068
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Interpretability of CNN

Identify the most class-discriminative
regions

C+ PCNN-EUV Grad-CAM of Positive predictions the 17-02-2023 at 10:00

No upcoming flare

No upcoming flare

C7.5 in 14h58min

0 Event Probability = 0.85

C3.6 in 19h46min

o Event Prebability = 0.81

0 Event Probability = 0.30 o Event Probability = 0.25

+
the pixels contributing the most to the
last convolutional layer
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100 200 200

Grad-CAM GuidedBacProp Gd-GCAM >(J.1+1o)-Gd‘GCAM mask on input

X2.3 in 08h47min
. Event Probability = 0.95

No upcoming flare

§ Event Probability = 0.38

C4.8 in 22h15min

5 Event Probability = 0.86

No upcoming flare

5 Event Probability = 0.34

B -
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Model: EfN2S-Blos (Ens)

Pred : 0.63 Grad-CAM

Francisco, G., Berretti, M., Chierichini, S., Mugatwala, R., Fernandes, J. M., Barata, T., & Del
Moro, D. (2024). Limits of solar flare forecasting models and new deep learning approach. Authorea
Preprints. DOI: 10.22541/ess0ar.170688972.24631782/v2
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Change of paradigm

Regression instead of Classification
+

Put the Physics in the ML model
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Jiao, Z., Sun, H., Wang, X., Manchester, W., Gombosi, T., Hero, A., & Chen, Y. (2020). Solar fl / R //‘
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Michele, P. (2023). Physics-driven machine learning for the prediction of coronal mass ejections %1 o

travel times. The Astrophysical Journal, 954(2), 151.

Chierichini, S., Francisco, G., Mugatwala, R., Foldes, R., Camporeale, E., De Gasperis, G., ... &
Erdelyi, R. (2024). A Bayesian approach to the drag-based modelling of ICMEs. Journal of Space
Weather and Space Climate, 14, 1.



Beyond the Black Box:
What is nexte \\

. ML is cheap!
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ML is growing fast!
NN,
ML is fixing its (major) drawbacks

B TR R A
The data(-sets) are more and more
important

%

ML is here to stay ?

Thank You!






CONCEPTS OF CONVOLUTIONAL NN l

NN designed to work with images and/or
regularly sampled data
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Components:
» Convolutional layer

Non-linear activation functions

Y

Pooling/downsampling

Y VvV

Fully connected layer for classification

Input Image Convolution Layer Max-pooling Fully Connected Layer




CONCEPTS OF LONG-TERM SHORT-TERM MEMORY

o Updated cell state to help
LSTM Recurrent Unit determine new hidden state

h,_, - hidden state at previous timestep t-1 (short-term memory)
¢,_; - cell state at previous timestep t-1 (long-term memory)

X, - input vector at current timestep t

h, - hidden state at current timestep t

¢, - cell state at current timestep t

Cell state

Hidden state
- vector pointwise multiplication - vector pointwise addition

@ - tanh activation function

o - sigmoid activation function

T - concatenation of vectors Candidate
: i for cell state

: update
Forget Input Output
gate gate gate

Dobilasi LSTM Recurrent Neural Networks — How to Teach a Network to Remember
the Past, (towardsdatascience.com)



http://towardsdatascience.com/

Forcing the Physics into ML approach

A complex signal, with many different timescales
e ‘A

— We can try to mix different proxies 1o o
reproduce/forecast the signal.
OR:

— We separate the signal’s relevant scales into

different modes, then reproduce/forecast the different L
modes mixing the proxies' modes (at or near the same

timescales). Then, we reproduce/forecast the signal by
combining the reproduced/forecast modes.

Modal
Composition

Materassi, M.; Alberti, T.; Migoya-Orué, Y.; Radicella, S.M.; Consolini, G. Chaos and Predictability in lonospheric

Time Series. Entropy 2023, 25, 368. https://doi.org/10.3390/e25020368 . -

Reda, R., Stumpo, M., Giovannelli, L. et al. Disentangling the solar activity-solar wind predictive causality at Space F r nt
Climate scales. Rend. Fis. Acc. Lincei 35, 49-61 (2024). https://doi.org/10.1007/s12210-023-01213-w o O CI CS I O
Stumpo M, Consolini G, Alberti T et al (2020) Measuring Information Coupling between the Solar Wind and the

Magnetosphere-lonosphere System. Entropy 22(3):276. https://doi.org/10.3390/e22030276

annroach of CN
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Applied to Black

g exercise: we know what we should get, we know
how to interpret the results

We can verify which quantities and which modes

i Mode
are more relevant to reproduce the different
timescales of the original signal by permutation

Dally scales

Urban heat index

analysis.

Regression on seasonal Regression on daily Regression on hourly
scale modes of T, BC scale modes of T, BC scale modes of T, BC
BB,BCFF BB, BC FF BB, BC FF

Mode
Composition

Santinami, E. (2024, February) Does Black Carbon aerosol influence the Urban Heat Island? A data-driven
approach. Master Thesis U. Rome “Tor Vergata”



Applied to Thermospheric Densiplied to
Thermospheri

A test: we expect the outocome and we interpret Thermosphere density

the results DenS|

We can learn which quantities and which modes are v
more relevant to reproduce the different timescales
of the original signal by permutation analysis.

Medium timescales ort timescales

Regression on long Regression on medium Regression on short
timescale modes of timescale modes of timescale modes of
F10.7, Mg 11, Ap F10.7, Mg 11, Ap F10.7, Mg 11, Ap

: z 2 e : . Mode
Cafiero, D. (2024 in preparation) From solar and geomagnetic indices to thermosphere density Master Thesis U. Rome Composition
“Tor Vergata” .
Thermosphere density

Bigazzi, A., Cauli, C., & Berrilli, F. (2020, June). Lower-thermosphere response to solar activity: an empirical-mode-
decomposition analysis of GOCE 2009-2012 data. In Annales Geophysicae (Vol. 38, No. 3, pp. 789-800). Copernicus
GmbH. https://doi.org/10.5194 /angeo-38-789-2020

Alberti, T., Consolini, G., Lepreti, F., Laurenza, M., Vecchio, A., & Carbone, V. (2017). Timescale separation in the solar
wind-magnetosphere coupling during St. Patrick's Day storms in 2013 and 2015. Journal of Geophysical Research:
Space Physics, 122, 4266-4283. https://doi.org/10.1002/2016JA023175

Consolini, G., Alberti, T., & De Michelis, P. (2018). On the forecast horizon of magnetospheric dynamics: A scale-to-
scale approach. Journal of Geophysical Research: Space Physics, 123, 9065-9077.
https://doi.org/10.1029/2018]A025952
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