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Outline

Forecasting has always been a powerful tool 

High efficiency vs Loss of explicability

ML is cheap + ML evolves extremely fast

Quick, nice results vs data limits & Deep 
Learning

We need to do better + we need to understand

The next steps
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Forecasting has always been

a powerful tool

We have honed this ability first in the eons of the biological

evolution, then encoding it in our culture, ‘recently’ by applying
the scientific method to our everyday life problems.

The mathematical tools to understand why some events are more
difficult to forecast than others.

The development in the last decades in sciences of complex

systems and statistics have allowed us to better define the limits
of predictability and - often- to extend those limits.

BUT! The robust forecast of flare eruptions still escapes us.

And also the apparently simpler problem of the propagation of a
coronal mass ejection in the interplanetary medium has not been

solved to the limit that we would like, while we fight with the

uncertainties associated with the boundary conditions.
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Scientific approach vs Machine Learning
 It is now feasible to compute the trajectory of plasma and magnetic field 

structures under the MHD equations in domains as large as the 
Heliosphere.

 Or try to predict -just by analyzing full disk images or the magnetograms-

whether a given solar Active Region will release part of its stored energy 

as high energy photons and particles, or shoot out a coronal mass 

ejection.
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Scientific approach vs Machine Learning

 Empirical, data-driven 

models and data fitting 
now enrolled into ML...

 Papaioannou A, Sandberg I, Anastasiadis A, Kouloumvakos A, Georgoulis MK, Tziotziou K, Tsiropoula G, 

Jiggens P, Hilgers A. Solar flares, coronal mass ejections and solar energetic particle event characteristics. 

Journal of Space Weather and Space Climate. 2016;6:A42.



Stumpo, M., Benella, S., Laurenza, M., Alberti, T., Consolini, G. and Marcucci, M.F., 2021. Open issues in 

statistical forecasting of solar proton events: A machine learning perspective. Space Weather, 19(10), 

p.e2021SW002794.
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Scientific approach vs Machine Learning

 Exact space weather predictions are prevented either by intrinsic limitations or by the 
lack of knowledge about the present state.

 To counter these limitations, we have come up with clever and clever numerical 

techniques to solve the differential equations that typically describe our problems, and 

ensemble methods [3,4] to cope with measure errors and unknown variables. We strive 

to extract from remote measures all the relevant information [5], by applying our 

understanding of the physics of the problem, to feed this information into our 
forecasting algorithms.

 And we are getting better and better at this too.

K

Dt
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Scientific approach vs Machine Learning

 In the absence of a definitive physical theory 

explaining the mechanisms of an AR, the best 

hope for forecasting solar eruptions lies in 

finding an empirical relationship between 

some well chosen features of ARs and the 
solar flares and CMEs.

 As a consequence, we have turned to the 

dark side and applied the methods of this 

hybrid of numerical methods, complex system 

science and statistics which is usually referred 
to as Machine Learning (ML).

 Bobra, M. G., & Couvidat, S. (2015). Solar flare prediction using SDO/HMI vector magnetic field data with a 

machine-learning algorithm. The Astrophysical Journal, 798(2), 135. 

 Florios, K., Kontogiannis, I., Park, S. H., Guerra, J. A., Benvenuto, F., Bloomfield, D. S., & Georgoulis, M. K. 

(2018). Forecasting solar flares using magnetogram-based predictors and machine learning. Solar Physics, 

293(2), 28. https://doi.org/10.1007/s11207-018-1250-4
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ML is cheap + ML evolves extremely fast

 Cheung, M. C. M., Rempel, M., Chintzoglou, G., Chen, F., Testa, P., Martínez-Sykora, J., ... & McIntosh, S. W. 

(2019). A comprehensive three-dimensional radiative magnetohydrodynamic simulation of a solar flare. Nature 

Astronomy, 3(2), 160-166. https://doi.org/10.1038/s41550-018-0629-3

 Camporeale, E. (2019). The challenge of machine learning in space weather:

Nowcasting and forecasting. Space weather, 17(8), 1166-1207.

https://doi.org/10.1029/2018SW002061
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ML is cheap + ML evolves extremely fast

 Camporeale, E. (2019). The challenge of machine learning in space weather:

Nowcasting and forecasting. Space weather, 17(8), 1166-1207.

https://doi.org/10.1029/2018SW002061

 Shiota, D., & Kataoka, R. (2016). Magnetohydrodynamic simulation of interplanetary propagation of multiple 

coronal mass ejections with internal magnetic flux rope (SUSANOO‐CME). Space Weather, 14(2), 56-75.  

https://doi.org/10.1002/2015SW001308

 Bobra, M. G., & Ilonidis, S. (2016). Predicting coronal mass ejections using machine learning methods. The 

Astrophysical Journal, 821(2), 127. DOI 10.3847/0004-637X/821/2/127

 Chierichini, S., Liu, J., Korsós, M. B., Del Moro, D., & Erdélyi, R. (2024). CME Arrival Modeling with Machine 

Learning. The Astrophysical Journal, 963(2), 121. DOI 10.3847/1538-4357/ad1cee
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ML: Quick, Nice results vs Correct 

Dataset use

 Neural Networks

 SVM

 Random Forest

 Gaussian models

 Convolutional NN

 ….



 Florios, K., Kontogiannis, I., Park, S. H., Guerra, J. A., Benvenuto, F., Bloomfield, D. S., & Georgoulis, M. 

K. (2018). Forecasting solar flares using magnetogram-based predictors and machine learning. Solar Physics, 

293(2), 28. https://doi.org/10.1007/s11207-018-1250-4

 Sun, Z., Bobra, M. G., Wang, X., Wang, Y., Sun, H., Gombosi, T., ... & Hero, A. (2022). Predicting solar 

flares using CNN and LSTM on two solar cycles of active region data. The Astrophysical Journal, 931(2), 163. 

DOI 10.3847/1538-4357/ac64a6

 Deshmukh, V., Flyer, N., Van der Sande, K., & Berger, T. (2022). Decreasing false-alarm rates in CNN-

based solar flare prediction using SDO/HMI data. The Astrophysical Journal Supplement Series, 260(1), 9. DOI 

10.3847/1538-4365/ac5b0c

BEWARE: sometimes there

are errors in:

The hyperparameter tuning process

How the samples are used

How the cross-validation is used

Flare Forecast

True Skill Score evolution:

 Barnes 2008: 0.24

 Florios 2018: 0.77

 Sun 2022: 0.90

 Deshmukh 2022: 0.90
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Flares: Next steps?

More info from B → by using topological 
describers

Add the Time dimension → use B movies

Higher layers info → use B + chromosphere 
+ corona

Adapt the Loss Functions → redefine 
error types

Explicability of Deep Learning → analysis of 
attention frames

Change of paradigm (e.g. Physics-Informed 
ML, ... )
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Use of topological describers

Topologically complex ARs are strongly 
correlated to flare emissions.

Therefore a topological descriptor that 

counts the number of separated PILs 
fragments in the ARs.

Feature ranking analysis tells us it is 
extremely relevant to reach high skill 

scores → it brings relevant 

information on the AR flaring 

potential.
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Analysis of time sequences

BUT they get similar TSS values as more 
standard methods

→ HMI data do not contain enough 
information?

→ flares’ stochasticity hampers the 

possibility of binary predictions, in 

favor of a probabilistic prediction?

Considering the “memory” of the process

Guastavino, S., Marchetti, F., Benvenuto, F., Campi, C., & Piana, M. (2022). 

Implementation paradigm for supervised flare forecasting studies: A deep learning 

application with video data. Astronomy & Astrophysics, 662, A105.

https://doi.org/10.1051/0004-6361/202243617

Campi, C., Benvenuto, F., Massone, A. M., Bloomfield, D. S., Georgoulis, M. K., & 

Piana, M. (2019). Feature ranking of active region source properties in solar flare 

forecasting and the uncompromised stochasticity of flare occurrence. The Astrophysical 

Journal, 883(2), 150. DOI 10.3847/1538-4357/ab3c26
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Use of more layers

Models combining SDO/AIA EUV images 

as inputs show improved 

performances compared to 

employing SDO/HMI photospheric 
magnetograms alone

 Francisco, G., Berretti, M., Chierichini, S., Mugatwala, R., Fernandes, J. M., Barata, T., & Del 

Moro, D. (2024). Limits of solar flare forecasting models and new deep learning approach. Authorea 

Preprints. DOI: 10.22541/essoar.170688972.24631782/v2
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Redefine error types/Performance Scores

A possible solution:

define new skill scores which allow 

ranking the prediction errors on the 
basis of their distribution along time

 Guastavino, S., Piana, M., & Benvenuto, F. (2022). Bad and good errors: Value-

weighted skill scores in deep ensemble learning. IEEE transactions on neural 

networks and learning systems. DOI: 10.1109/TNNLS.2022.3186068

Two forecasts: same performance, but totally different 

predictive value.
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Interpretability of CNN

 Francisco, G., Berretti, M., Chierichini, S., Mugatwala, R., Fernandes, J. M., Barata, T., & Del 

Moro, D. (2024). Limits of solar flare forecasting models and new deep learning approach. Authorea 

Preprints. DOI: 10.22541/essoar.170688972.24631782/v2
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Change of paradigm

Regression instead of Classification

+

Put the Physics in the ML model

Jiao, Z., Sun, H., Wang, X., Manchester, W., Gombosi, T., Hero, A., & Chen, Y. (2020). Solar flare 

intensity prediction with machine learning models. Space weather, 18(7), e2020SW002440.

Guastavino, S., Candiani, V., Bemporad, A., Marchetti, F., Benvenuto, F., Massone, A. M., ... & 

Michele, P. (2023). Physics-driven machine learning for the prediction of coronal mass ejections’ 

travel times. The Astrophysical Journal, 954(2), 151.

Chierichini, S., Francisco, G., Mugatwala, R., Foldes, R., Camporeale, E., De Gasperis, G., ... & 

Erdelyi, R. (2024). A Bayesian approach to the drag-based modelling of ICMEs. Journal of Space 

Weather and Space Climate, 14, 1.
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Thank You!

More info from B → by using topological 
describers

Add the Time dimension → use B movies

Higher layers info → use B + chromosphere 
+ corona

Adapt the Loss Functions → redefine 
error types

Explicability of Deep Learning → analysis of 
attention frames

ML is cheap!

ML is growing fast!

ML is fixing its (major) drawbacks

The data(-sets) are more and more 
important

ML is here to stay ?

Beyond the Black Box:
What is next?
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Extra Slides



NN designed to work with images and/or 
regularly sampled data

Components:

 Convolutional layer

 Non-linear activation functions

 Pooling/downsampling

 Fully connected layer for classification
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Modal 

Decomposition

Modal 

Composition

ML Forecasting 

Method 1

ML Forecasting 

Method 2

ML Forecasting 

Method 3

 Forcing the Physics into ML 

approach of CN

A complex signal, with many different timescales 
embedded. 

→  We can try to mix different proxies to 
reproduce/forecast the signal.

OR: 

→ We separate the signal’s relevant scales into 

different modes, then reproduce/forecast the different 

modes mixing the proxies’ modes (at or near the same 

timescales). Then, we reproduce/forecast the signal by 
combining the reproduced/forecast modes.







Forcing the Physics into ML approach

https://doi.org/10.3390/e25020368
https://doi.org/10.1007/s12210-023-01213-w
https://doi.org/10.3390/e22030276


Mode 

decomposition 

Mode 

Composition

Hourly scales

Regression on seasonal 

scale modes of T, BC 

BB, BC FF

Seasonal scales Daily scales

Urban heat index

Hurban heat index

Regression on daily 

scale modes of T, BC 

BB, BC FF

Regression on hourly 

scale modes of T, BC 

BB, BC FF

An exercise: we know what we should get, we know 
how to interpret the results

We can verify which quantities and which modes 

are more relevant to reproduce the different 

timescales of the original signal by permutation 
analysis.



Applied to Black 

Carbon



Mode 

decomposition 

Mode 

Composition

 Applied to 

Thermospheric 

Density

Short timescales

Regression on long

timescale modes of

F10.7, Mg II, Ap

Long timescales Medium timescales

Thermosphere density

Thermosphere density

Regression on medium

timescale modes of 

F10.7, Mg II, Ap

Regression on short

timescale modes of

F10.7, Mg II, Ap

A test: we expect the outocome and we interpret 
the results

We can learn which quantities and which modes are 

more relevant to reproduce the different timescales 
of the original signal by permutation analysis.









Applied to Thermospheric Density

https://doi.org/10.5194/angeo-38-789-2020
https://doi.org/10.1002/2016JA023175
https://doi.org/10.1029/2018JA025952

