

A Precursor to Solar Prominence Eruptions

Detection and Analysis of EUV Prominence Oscillations

William Beckwith-Chandler¹

Claire Foullon¹, Erwin Verwichte²

¹Department of Mathematics & Statistics University of Exeter, UK ² Department of Physics University of Warwick, UK EPSRC

Engineering and Physical Sciences Research Council

1/15

Introduction

- Ultra-long period oscillations detected in EUV filaments with SOHO/EIT data (Foullon et al. 2004)
- Automated detection of EUV prominences with EIT (Foullon & Verwichte 2006)
- Link between period and prominence height investigated (Foullon et al. 2009)
- Filament and prominence observations not simultaneous – EIT only

Joarder & Roberts, 1993

Prominence in 3D

- ➤ 2011 First quadrature between the STEREO spacecraft and SDO
- Facilitates viewing the Sun in three dimensions
- Large prominence first seen in SDO/AIA (Northeastern limb)
- Filament/prominence observed simultaneously from different viewpoints

Prominence Eruption

27th March 2011

Part 1: Prominence Detection

- Automated detection developed for STEREO/EUVI and SDO/AIA
- Obtain apparent height and limb angle (B*) of each prominence.

Part 1: Prominence Height Profiles

Precursor Stage (b)

Model works best for quiescent prominences with thin longitudinal extent

Function fitted to apparent height

 Significant deviation in buildup to eruption (~ 300 h).

R₀

Part 1: Prominence Height Model

240

220

Precursor

Stage (b)

280

300

Time (hours)

260

320

210

Rapid rise

Part 2: Filament Regions

- Analysis of filament oscillations in a similar region to the height observations
- Spacecraft configuration allows us to track the filament for longer
- Investigate whether oscillations could be interpreted as slow string modes
- Second overlapping region chosen to explore further dynamics.

Part 2: Filament Timeseries

Part 2: Filament Oscillation Period

11/15

Part 3: Slow String Mode Interpretation

- Simultaneous height measurement and period detection
- Compare periods and heights in Quiescent (a) and Precursor(b) stages
- ➢ Results suggest slow string modes explanation is plausible.

Part 3: Thermal Cycle Signature

- Higher-cadence data in 304 Å allows two-wavelength comparison
- Period increase also seen in AIA 304 Å
- Phase shifts in the precursor stage.

Part 3: Shorter-Period Behaviour

Precursor Stage (b)

Interval 3

Conclusions

- Multi-spacecraft configuration facilitates simultaneous observations of prominence material and corresponding filament
- Periods increase (P₁ and P₂) in filament plasma between two stages correlates with prominence height increase – supports slow string mode interpretation
- > Phase shifts between bandpasses may indicate presence of a thermal limit cycle
- > Period increase (P_3) during precursor stage (b).

Beckwith-Chandler, Foullon & Verwichte, 2024, ApJ, to be submitted.

