

July 28, 2011

ULA Rideshare Capabilities

Jake Szatkowski Business Development & Advanced Programs

Copyright © 2011 United Launch Alliance, LLC. All Rights Reserved.

Rideshare Missions

ULA's family of expendable launch vehicles has a long history of providing high-value payload accommodations for a variety of customer spacecraft & missions throughout the solar system

ULA PLANETARY MISSIONS (Since 2001)	VEHICLE	LAUNCH DATE	DESTINATION	
Mars Odyssey	Delta II 7925	4/7/2001	Mars	
CONTOUR	Delta II 7425	7/3/2002	Comet	
Mars Rover A (Spirit)	Delta II 7925	6/10/2003	Mars	
Mars Rover B (Opportunity)	Delta II 7925H	7/7/2003	Mars	
MESSENGER	Delta II 7925H	8/3/2004	Mercury	
Deep Impact	Delta II 7925	1/12/2005	Comet	
Mars Reconnaissance Orbiter	Atlas V 401	8/12/2005	Mars	
New Horizons	Atlas V 551	1/19/2006	Pluto	
STEREO	Delta II 7925	10/25/2006	Sun (Earth orbit)	
Phoenix	Delta II 7925	8/4/2007	Mars	
Dawn	Delta II 7925H	9/27/2007	Asteroid Belt	
Lunar Reconnaissance Orbiter	Atlas V 401	6/18/2009	Moon	

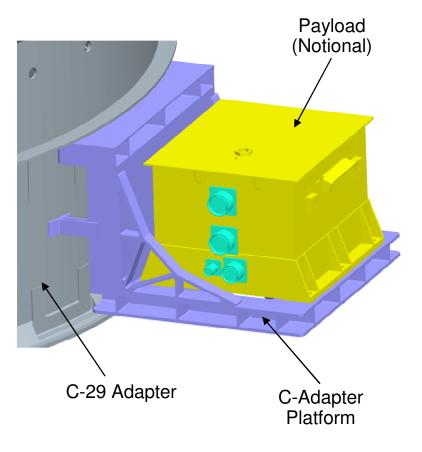
Most of these missions were launched as primary payloads and used the full capability of the launch vehicle, but there are lower-cost alternatives for achieving these science objectives

Rideshare Concept

- □ What is Rideshare?
 - Sharing available performance and volume margin that would otherwise go unused by the primary payload
- Advantages to Rideshare
 - Provides an inexpensive and reliable solution
 - Cost-savings allows more funding to be applied to the science mission
 - Rideshare payload receives the benefits of full-up launch service
- Successfully demonstrated in 2009, with LCROSS was flown as a secondary payload on an Atlas V that launched the LRO

ULA Rideshare Capability Overview

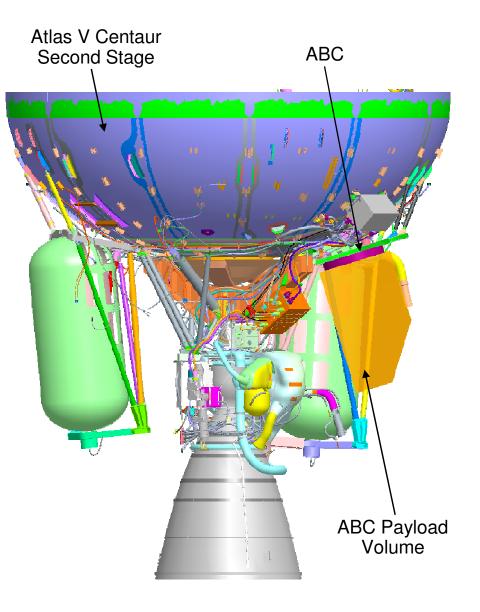
CAPABILITY	MAXIMUM MASS PER PAYLOAD	VOLUME	INTERFACE	MAXIMUM # / LAUNCH	COM DII	PATIB DIV	ILITY AV	STATUS
Delta II Second-Stage Mini-Skirt	1.0 kg (2.2 lb)	10 cm ³ (4 in ³)	P-POD	6 Cubesats	х			ILC 2011
Delta IV Equipment Shelf	1.0 kg (2.2 lb)	10 cm ³ (4 in ³)	P-POD (NPSCuL)	24 Cubesats		x		Concept Development
	1.0 kg (2.2 lb)	10 cm ³ (4 in ³)	P-POD	24 Cubesats		x	x	Concept Development
CAP (C-Adapter Platform)	45 kg (100 lb)	23 cm x 31 cm x 33 cm (9 in x 12 in x 13 in)	15" clampband	4		x	x	ILC 2012
ABC (Aft Bulkhead Carrier)	77 kg (170 lb)	51 cm x 51 x 76 cm (20 in x 20 in x 30 in)	15" clampband or P-POD	1			x	ILC 2012
A-DECK (Auxiliary Payload Deck) (Adaptive Launch Solutions)	905 kg (2,000 lb)	152-cm dia. (60-in dia.)	15", 23", 37" clampband	1		x	x	ILC 2012
ESPA (EELV Secondary Payload Adapter) (Moog CSA Engineering)	180 kg (400 lb)	61 cm x 71 cm x 96 cm (24 in x 28 in x 38 in)	15" bolted	6		x	x	Operational
IPC (Integrated Payload Carrier)	910 kg (2,000 lb)	137-cm dia. 8", 15", 37" (54-in dia.) clampband 1			x	x	Operational	
XPC (External Payload Carrier) (Special Aerospace Services)	1,590 kg (3,500 lb)	20.1 m ³ (710 ft ³)	60" diameter	1			x	PDR 12/2010
DSS-4M (Dual Spacecraft System - 4M)	2,270 kg (5,000 lb)	254-cm dia. x 127 cm (100-in dia. x 50 in)	37" clampband	1		x	x	ILC 2012
DSS-5M (Dual Spacecraft System - 5M)	5,000 kg (11,000 lb)	4-m dia. x 6.1 m (13.1-ft dia. x 20 ft)	62" bolted	1		x	x	Concept Development

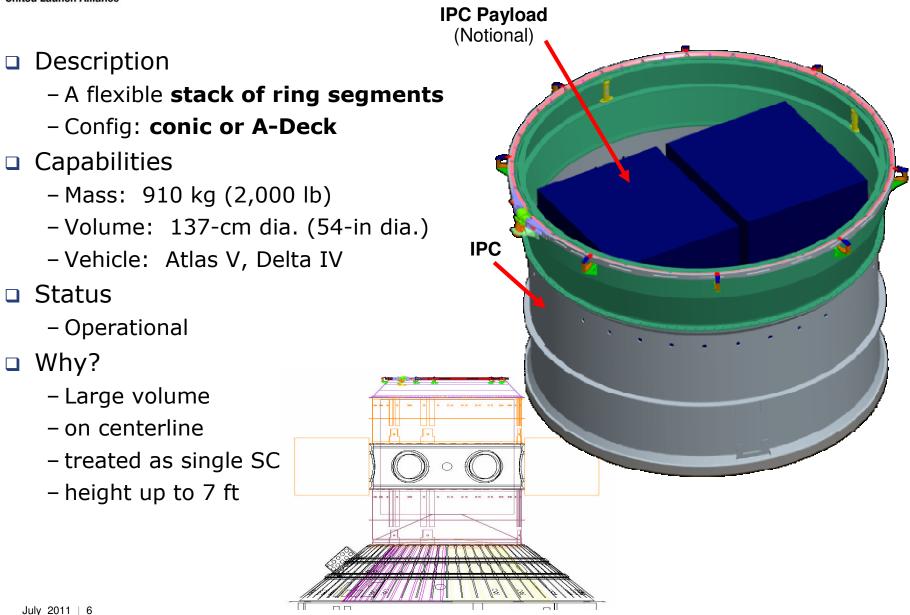

C-Adapter Platform (CAP)

Description

- A cantilevered platform attached to the side of a C-adapter to accommodate secondary payloads
- Alt config: flat plate using same brackets w/ 15 in. sep ring

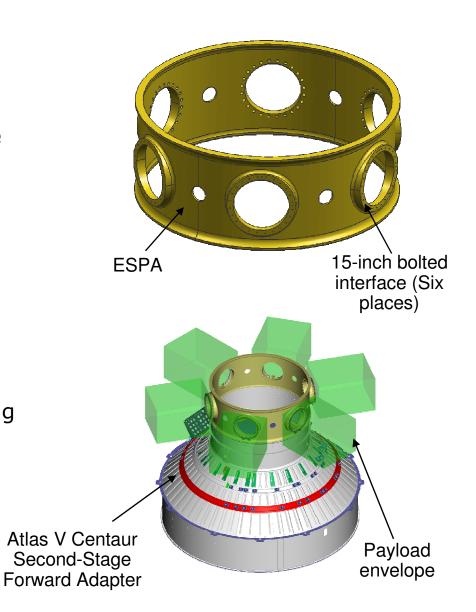
Capabilities


- Mass: 45 kg (100 lb)
- Volume: 23 cm x 31 cm x 33 cm (9 in x 12 in x 13 in)
- Interface: 15-in clampband
- Capacity: 4 slots
- Vehicle: Atlas V, Delta IV
- Status
 - First launch 2012
- □ Why?
 - Can be used to advance TRL for electronics into the Van Allen Belt


Aft Bulkhead Carrier (ABC)

- Description
 - I/F located at the aft-end of the Atlas V Centaur second-stage
- Capabilities
 - Mass: 77 kg (170 lb)
 - Volume: 51 cm x 51 cm x 76 cm (20 in x 20 in x 30 in)
 - Interface: 15-in clampband or P-POD dispenser
 - Capacity: 1 slot
 - Vehicle: Atlas V
- Status
 - First launch 2012 (NROL-36)
 - ABC Users Guide available 9/11
- □ Why?
 - Sep from primary release any time, no contamination, no recontact, no security

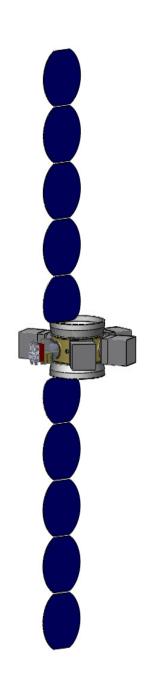
Integrated Payload Carrier (IPC)


EELV Secondary Payload Adapter (ESPA)

Description

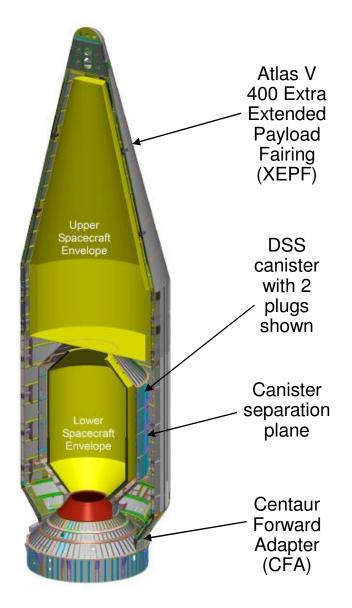
 An adapter located between the second-stage and the primary payload, which can accommodate up to six secondary payloads

Capabilities


- Mass: 180 kg (400 lb)
- Volume: 61 cm x 71 cm x 96 cm (24 in x 28 in x 38 in)
- Interface: 15-in bolted
- Capacity: 6 slots
- Vehicle: Atlas V, Delta IV
- Developer: Moog CSA Engineering
- Status
 - Operational
 - ESPA Rideshare Users Guide currently available

Electric 3rd-Stage

- The ESPA TUG (Transfer Utility Guide) provides high deltaV to perform delivery of ESPA class payloads to a variety of orbits and Earth Escape missions
 - -Delivery to Earth Escape (Lunar, NEO, Mars)
 - -Delivery of a constellation suite
 - -Delivery to GSO
 - -High delta-V
 - -Solar Electric propulsion
 - -Based on the ESPA Ring

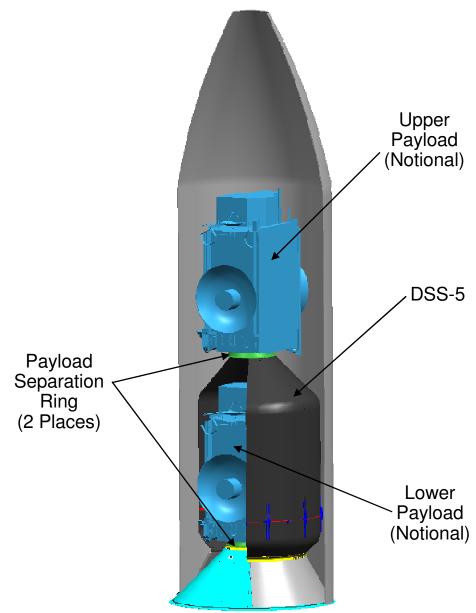

Dual Spacecraft System, 4-m (DSS-4)

Description

 A modular dual-manifest launch capability for 4m fairings, using Centaur Forward Assembly hardware

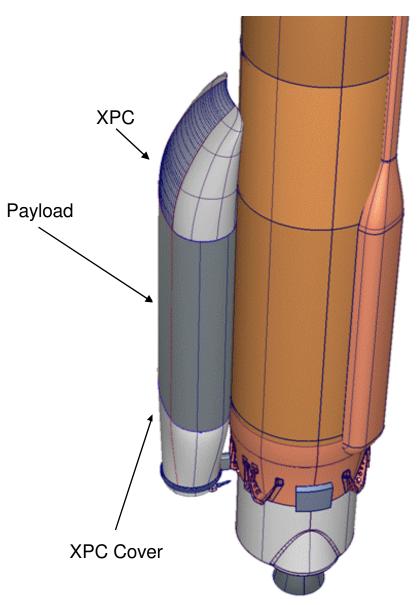
Capabilities

- Mass: 2,270 kg (5,000 lb)
- Volume: 254-cm dia. x 127 cm (100-in dia. x 50 in)
- Interface: Variable
- Capacity: 1 slot
- Vehicle: Atlas V, Delta IV
- Status
 - CDR Dec 2009
- □ Why?
 - Can lift 2 Delta-II class S/C, variable stack height, 10,000 lb upper w/ 5,000 lb lower



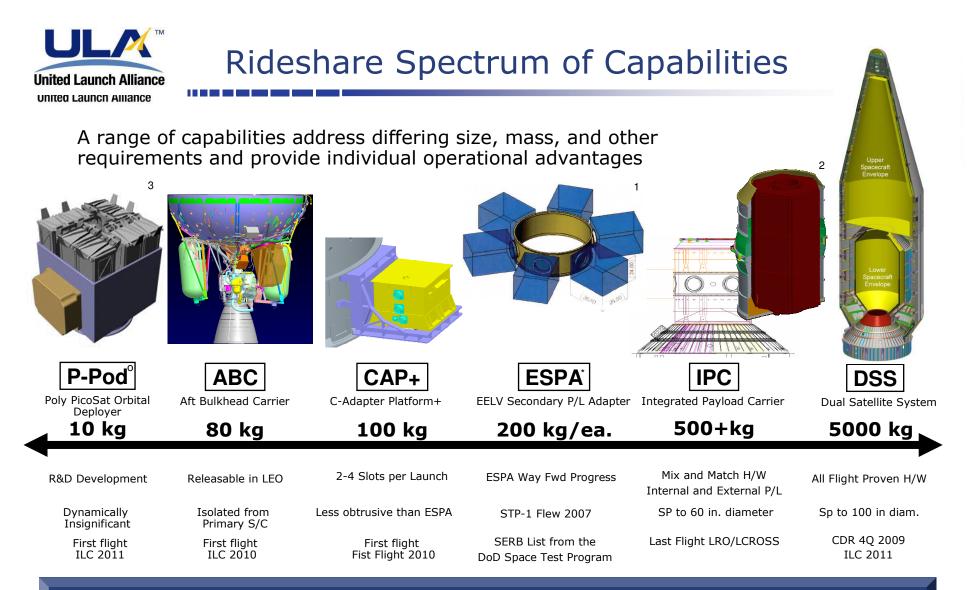
Dual Spacecraft System, 5-m (DSS-5)

Description


- A dual-manifest launch capability for 5-m fairings, using newly designed composite structure
- Capabilities
 - Mass: 5,000 kg (11,000 lb)
 - Volume: 4-m dia. x 6.1 m (13.1ft dia. x 20 ft)
 - Interface: 62-in Bolted
 - Capacity: 1 slot
 - Vehicle: Atlas V, Delta IV
- Status
 - Concept Development
- □ Why?
 - Can support 2 GPS III S/C

eXternal Payload Carrier (XPC)

- Description
 - An inert Solid Rocket Motor to hold small payloads for injection into a hypersonic suborbital trajectory
- Capabilities
 - Mass: 8000 lb
 - Volume: 60" diameter x 70 ft
 - Payload: ~3500 lb
 - Capacity: 1 SRM slot
- Status
 - Tailored PDR
- □ Why?
 - XPC goes ballistic w/ the booster
 - 900,000 ft going Mach 14,
 - ideal for Mars re-entry or SCRAMjet technology,
 - will have 6 min. of 0-g



All potential mission opportunities will need to be:

-Assessed for technical compatibility

-Coordinated and approved by the primary payload customer

MISSION TIMEFRAME			PROSPECTIVE CAPABILITY MATCHUPS					
	ORBIT TYPE	P-POD	CAP	ABC	ESPA	IPC		
AEHF	2011-2020	GTO	Х		Х			
DMSP	2012-2015	LEO (WR)	Х	Х	Х	Х		
GPS IIF	2010-2015	MEO	Х	Х	Х	Х	Х	
GPS III	2014-2020	MEO	Х	Х	Х			
SBIRS	2011-2020	GTO	Х	Х	Х			
LDCM	2012	LEO (WR)	TBD					
MMS	2014	GTO	TBD					
RBSP	2012	GTO	Х	Х	Х	Х		
TDRS	2012-2017	GTO	Х	Х	Х			
CLS 1	2013	LEO	Х	Х	Х	Х	Х	
CLS 2	2014	LEO	Х	Х	Х	Х	Х	

Delivering a Wide Range of Small Spacecraft with the Appropriate Conops and Technical Accommodations

1 ESPA Graphic courtesy of CSA Engineering, Inc 2 COTSAT courtesy of NASA/AMES 3 NPSCuL courtesy of NPS