Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver

Renato Filjar

Faculty of Engineering, University of Rijeka, Rijeka, Croatia, and Krapina University of Applied Sciences, Krapina, Croatia
Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

- **Content of presentation**
- Problem statement
- State-of-the-art
- Existing and emerging technologies
- Positioning environment-adaptive SDR-based GNSS position estimation algorithm with statistical learning mitigation of ionospheric effects
- GNSS positioning as a service
- The quest of accuracy
- Summary
- Reference
UN/Mongolia Workshop on Applications of GNSS (hybrid)
Ulaanbaatar, Mongolia, 25th - 29th October, 2021
Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

- Problem statement
- Exposure to systematic, natural, and artificial sources of disturbances and disruptions originated in the positioning environment
- Position estimation process associated with a black-box GNSS receiver
- GNSS operators are expected to guarantee PNT QoS, in the uncontrolled positioning environment
- GNSS applications extends PNT QoS needs

Source: (Sainz Subirana et al, 2012)
Source: (Jukić, Iliev, Sikirica, Lenac, Špoljar, Filjar, 2020)
Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

- **A traditional GNSS application model**
- **Unnecessary equivalence between a GNSS receiver and a GNSS position estimation process/algorithm** as a considerable obstacle in transparent definition of the GNSS application QoS

Source: (Filić, Filjar, 2018, book), (Filić, Filjar, 2018, MIPRO), (Filić, Filjar, 2018, ION GNSS+ 2018)
Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

• **State-of-the-art - GNSS position estimation process**

• **Input:** raw GNSS pseudorange measurements, corrected for known systematic errors (bias, trend, seasonality) using globalised correction models (Klobuchar, NeQuick, standard atmosphere-based Saastamoinen); navigation message data

• Various position estimation algorithms based on different optimisation approaches

Source: (Zogg, 2009)
UN/Mongolia Workshop on Applications of GNSS (hybrid)
Ulaanbaatar, Mongolia, 25th - 29th October, 2021
Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

- **State-of-the-art - shortcomings**
- **GNSS pseudorange error correction using the global models** → failure in recognition of the **real positioning environment conditions**
- Specification of the core PNT QoS do not translate into GNSS application QoS needs easily
- Augmentation and assistance (SBAS: WAAS, EGNOS) → **additional infrastructure**, expensive for establishment, operation, and maintenance
- Additional infrastructure and effort for **mitigation of artificial disruptions and disturbances** (**spoofing, jamming**), while potential GNSS cyberattacks may raise the mitigation costs
- Calls for ‘GNSS receiver standardisation’ and ‘certification’
Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

- Related technology developments
- Transition to transparent Software-Defined Radio (SDR) platform
- Availability of the positioning environment-related observations, real-time and archived (space weather, geomagnetic, ionospheric, and tropospheric conditions)
- Motion and environment sensors availability in users devices
- Raising computational capacity of user devices
- A wide-spread use of statistical learning methods
- Availability of efficient methods for sensor information fusion
- Advanced computational architectures and services (cloud, mist, advanced encryption and authentication etc.)
• **Mathematical foundations of GNSS position estimation process**

• **GNSS position estimation algorithm** as a solution of the optimisation problem

\[
\hat{x} = \arg \min_{x} p(x)^T \Sigma^{-1} p(x)
\]

\[
\Sigma \overset{\text{def}}{=} \text{cov}\left(\mathbf{v}\right)
\]

Sources:
(Filić, 2021), and
(Filić, Grubišić, Filjar, 2018)

Conclusion: Mitigation of the GNSS positioning environment effects may be embedded within the GNSS position estimation algorithm, should the statistical properties of the effects are known or identified.
UN/Mongolia Workshop on Applications of GNSS (hybrid)
Ulaanbaatar, Mongolia, 25th - 29th October, 2021
Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

- A proposal for a transparent and distributed GNSS position estimation algorithm based on SDR
- GNSS position estimation detached from traditional GNSS receiver architecture, integrates with the GNSS application
- SDR renders the GNSS position estimation algorithm transparent

Sources: (Filić, Filjar, 2018, book), (Filjar, Damas, Iliev, 2020)
Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

- Positioning environment-adaptive GNSS position estimation algorithm integrated with the GNSS application

- **GNSS application** manages **autonomously** the QoS (selection of suitable GNSS position estimation method and error correction procedures based on real-time positioning environment conditions, scalable GNSS positioning performance)

- **GNSS operator** remains responsible for the matters of GNSS spectrum and signals

- Positioning to become expandable towards **context recognition**

Sources: (Filić, Filjar, 2018, book), (Filjar, Damas, Iliev, 2021), (Jukić, Iliev, Sikirica, Lenac, Špoljar, Filjar, 2020)
The quest of GNSS positioning accuracy – not anymore!

Majority of GNSS applications does not require the best absolute positioning accuracy possible.

Transition of positioning towards context recognition and localisation.

Re-definition of the positioning accuracy as the GNSS positioning performance indicator → GNSS operator should concern with the GNSS spectrum and GNSS signal integrity maintenance, and not on the infrastructure development and operation.

Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

- **Positioning environment-adaptive GNSS position estimation algorithm**
- Mobile unit as pseudorange and positioning environment conditions observations device
- Autonomous adaptation of position estimation algorithm to immediate real-time ambient conditions

Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

- Positioning environment-adaptive GNSS position estimation algorithm with mitigation of ionospheric effects
- GNSS Software-Defined Radio empowered with mitigating position estimation algorithms, real-time space weather observations, and statistical learning-based correction models

Sources: (Filjar, Damas, Iliev, 2021), (Filić, Filjar, 2018, book)
Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

Case-study of short-term rapidly developing geomagnetic storm in sub-equatorial area (Darwin, NT)

LRM … Linear Regression Model, MMLPNN … Monotone Multi-layer Perceptron Neural Network Model, RFM … Random Forest Model, Klobuchar … standard Klobuchar Model

Sources: (Filjar, Weintrit, Iliev, Malčić, Jukić, Sikirica, 2020), (Filić, Filjar, 2019, URSI AP-RASC)
• **Enhanced autonomous GNSS position estimation algorithm**, with mitigation of ionospheric effects

• Weighted Least Squared GNSS position estimation method

• **Weights** determined based on statistical properties of the actual geomagnetic/ionospheric conditions observed, using statistical learning-based models

\[
\hat{x} = \arg\min_x \tilde{p}(x)^T \tilde{p}(x).
\]

\[
\tilde{p}'(x) = (p'_1(x), p'_2(x), p'_3(x), p'_4(x))^T
\]

\[
\begin{bmatrix}
2(x_1 - x) & 2(y_1 - y) & 2(z_1 - z) & -2c(d_1 - cd_T) \\
2(x_2 - x) & 2(y_2 - y) & 2(z_2 - z) & -2c(d_2 - cd_T) \\
2(x_3 - x) & 2(y_3 - y) & 2(z_3 - z) & -2c(d_3 - cd_T) \\
2(x_4 - x) & 2(y_4 - y) & 2(z_4 - z) & -2c(d_4 - cd_T)
\end{bmatrix}
\]

\[
W = diag(k_1, k_2, \ldots, k_N)
\]

\[
k_{i1} = \frac{1}{\sigma_{i1}^2}
\]

\[
\sigma_{i1}^2 = \frac{1}{\sin(\text{Ele}_i)^2}
\]

\[
k_{i2} = \frac{1}{\sigma_{i2}^2}
\]

\[
\sigma_{i2}^2 = 1 + \frac{2}{\sin(\text{Ele}_i)^2}
\]

Sources: (Filić, 2021), (Filić, Grubišić, Filjar, 2018)
Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

- Satellite-based position determination ceased to be product- (receiver-) oriented, and becomes a service.
• Substance of presentation (I)

• State-of-the-art

• **Positioning environment conditions** as the cause of GNSS positioning performance degradation at various scales of intensity, occurrence, and duration → traditionally mitigated with costly augmentation infrastructures, and global and generalised correction models

• Traditional approach assumes incorrectly *equivalence between GNSS receiver and GNSS positioning process*

• GNSS operators cannot control the positioning environment, but requested to provide guarantees of PNT service quality

• Software-defined radio deployment renders GNSS positioning process transparent, in computationally capable technology environment
Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

- **Substance of presentation (II)**
- **Environment-adaptive GNSS positioning process** is proposed
- GNSS positioning process rendered distributed, and considered independent from GNSS receiver architecture, with GNSS position estimation associated to GNSS application
- Immediate real-time positioning environment conditions awareness achieved through *sensor information fusion* (third-party data, or direct measurements at the positioning spot)
- Statistical learning on GNSS positioning environment conditions data → detection, identification, modelling, correction, learning from direct experience → adaptiveness to the actual environmental conditions
- Position estimation process associated to GNSS application, not GNSS receiver → fitting the process design with GNSS application needs, this revealing GNSS operators from GNSS augmentations, corrections, and PNT guarantees provision
Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

- **Reference (third-party)**
 - GSA. (2019). GNSS user needs and requirements library. EUSPA (former GSA). Prague, Czechia. Available at: https://www.euspa.europa.eu/euspace-applications/euspace-users/user-needs-and-requirements
Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

- **Reference (books)**

Reference (scientific journals)

Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

• **Reference (scientific journals)**

Reference (conference papers)

Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

• Reference (conference papers)

UN/Mongolia Workshop on Applications of GNSS (hybrid)
Ulaanbaatar, Mongolia, 25th - 29th October, 2021
Environment-adaptive GNSS position estimation deployed in distributed GNSS software-defined radio receiver (R Filjar, Croatia)

APPRECIATE YOUR ATTENTION.

MAY YOU STAY WELL AND SAFE!

AN INVITATION TO
BAŠKA SPATIAL INFORMATION FUSION (SIF) CONFERENCE
Baška, Krk Island, Croatia
Early October, 2022 - details in January 2022

Prof Renato Filjar, PhD FRIN MION
Faculty of Engineering, University of Rijeka, Croatia, and Krapina University of Applied Sciences, Croatia
E-mail: renato.filjar@gmail.com