Accessing Space with the ISS Bartolomeo Platform

Announcement of Opportunity with the United Nations Office of Outer Space Affairs (UNOOSA)

DEFENCE AND SPACE

Dr. Christian Steimle, Simone Sasse 25 November 2019

Overview to Bartolomeo Concept of Operations Platform Design and Capabilities All-in-one Space Mission Service Capability offered within the UNOOSA cooperation Specific Payload Requirements

25 November 2019 Accessing Space with the ISS Bartolomeo Platform

What is Bartolomeo?

New external platform on ISS / Columbus
Able to host all payload sizes
Giving best viewing conditions on ISS
Providing highest data downlink rate on ISS
Will be launched in March 2020

Columbus Module

Zenith

Nadi

Payloads

Bartolomeo

Ram

Optical Data Link

25 November 2019 Accessing Space with the ISS Bartolomeo Platform

5

ArgUS Multi-Payload Carrier

Columbus Module

Zenith

Nadi

Bartolomeo

AIRBUS

Ram

Optical Data Link

6

25 November 2019

DEFENCE AND SPACE

Bartolomeo Concept of Operations

DEFENCE AND SPACE

Payload Launch

- Launch with any ISS supply vehicle
- Launch opportunity every 2 – 3 months

Payload Installation

Payload installation by ISS Robotic Manipulation System [Image credit: NASA]

Payload transfer - through either ISS payload airlock

Image credit: NASA]

9

20

Payload Retrieval

10000

1997

+ 1070

BBB B . 0

Payload / sample retrieval option through the payload airlock

00

[Image credit: NASA]

10

-

Official Use

(स्ररव (स्ररव) नाकाकाका) (नान काका)

Payload Operation

DEFENCE AND SPACE

Bartolomeo Platform Design and Capabilities

Payload Accommodation GOLD-2 interface **ISS Zenith** 6.6.6. European Columbus Module Power & Data Harness Columbus Columbus secondary Primary trunnion Trunnion Payloads ESA TELDASAT antenna 2B 2A **ISS Starboard ArgUS Multi-Payload Carrier** Outrigger └ ArgUS can be accommodated on Slot either slot Slot selected based on payload Slot 8 on Nadir-facing side **ISS Ram** requirements and overall

AIRBUS

booking situation

Payload Viewing

Payload viewing quality

Slots	Nadir	Zenith	Ram
1A			
1B			
2A			
2B			
3			
4			
5A			
5B			
6A			
6B			
7			
8			

DEFENCE AND SPACE

Bartolomeo All-in-one Space Mission Service

Official Use

Bartolomeo All-in-one Space Mission Service (Standard Service)

Payload transfer Payload operation to the outside of the ISS on the Bartolomeo Standard service 5 platform L+3 months Contract signature **Payload launch Payload installation Payload data** L-20 months on any ISS service using the ISS Robotic Manipulator System Data delivery to the vehicle customer

Bartolomeo All-in-one Space Mission Service

Optional services

Optional Services

Use of the broadband data downlink

Payload / sample return

Payload design support

DEFENCE AND SPACE

Official Use

AIRBUS

Capability offered within the upcoming 1st Announcement of Opportunity

Capability offered within the Opportunity

- > 3U-sized payload will be integrated, launched, installed and operated as part of the Bartolomeo / ArgUS Multi-Payload Carrier free of charge (Standard Service)
 > 1U = 10 x 10 x 10 cm
- > Mission duration 1 year is included

Optional Services:

- Larger payload sizes and longer mission durations are available at 100,000 €/U/year
- > Payload return available at 75,000 €/ kg

SUSTAINABLE GOALS

Specific Payload Requirements

AIRBUS

Official Use

Payload Requirements

General Mission Requirements

ISS Orbit Characteristics

Payload Attitude Characteristics

Payload Design Requirements

Mechanical Interfaces

Electrical Interfaces

Data Interfaces

Software Interfaces

Safety Requirements

Environmental Requirements

Mechanical Environment

Thermal Environment

Electro-magnetic Environment

Space Environment

General Mission Requirements

> ISS orbit characteristics

ISS Orbit Parameter	Value
Orbital inclination	51.64 deg
Orbit altitude	403 to 408 km
Orbital period	92.89 minutes
Solar beta angle variation	-75 to +75 deg
Position error	6 m
Semi-major axis error	20 m

General Mission Requirements

> Payload attitude characteristics

ISS Attitude	Yaw	Pitch	Roll
+XVV +Z Nadir (TEA)	-15° to +15°	-20° to +15°	-15° to +15°
-XVV +Z Nadir	+165° to +195°	-20° to +15°	-15° to +15°
+YVV +Z Nadir	-110° to -80°	-20° to +15°	-15° to +15°
-YVV +Z Nadir	+75° to +105°	-20° to +15°	-15° to +15°
+ZVV -X Nadir	-15° to +15°	+75° to +105°	-15° to +15°
-ZVV -X Nadir	+165° to +195°	+75° to +105°	-15° to +15°

Payload Attitude Parameter	Typical Performance	
Attitude rate non-micro-gravity mode	±0.05 deg/s/axis	
Attitude knowledge at S0 truss	<0.25 deg/axis (3o)	
Attitude knowledge on Bartolomeo	<1.0 deg/axis (3o)	

18

AX R51

Payload Design Requirements

> Mechanical interfaces

ArgUS Multi-Payload Adapter

Official Use

- ArgUS base plate hole pattern to be respected
- ArgUS soft dock feature to be implemented

> Mechanical interfaces

ArgUS Multi-Payload Carrier

Official Use

- ArgUS base plate hole pattern to be respected
- ArgUS soft dock feature to be implemented

Payload Design Requirements

> Electrical and data interfaces

ArgUS Interface Parameters		
Power (operational)	28 VDC up to 140 W	
Power (survival)	28 VDC up to 20 W	
Data downlink	0.1 Mbit / s	
Commanding and Monitoring	Near Real time through Columbus	

Payload Design Requirements

> Safety requirements

Hazard	Control
Structural hazards	 Application of factor of safety with positive margin; design for minimum risk Fault tolerance where applicable Redundant mechanism
Electrically operated systems	 Inhibits to control inadvertent operations appropriate to the hazard level Redundancy as necessary to perform required functions, Design controls i.e. EMI
Leakage of toxic substances	 Fault tolerance in seals appropriate Structural strength of containers
Flammable materials	 Elimination of flammable materials Containment Wire sizing and fusing
Pressure systems	Factor of safety
RF systems	 Design to have power below hazard level and frequency in approved range Inhibits to control inadvertent operations appropriate to the hazard level
Battery hazards	 Containment Protection circuits

Environmental Requirements

- Mechanical environment
 Launch loads for
 - Launch loads for pressurized launch packed in foam
 - On-orbit loads caused by crew handling, airlock operations, robotic operations
- > Electro-magnetic environment
- > Space environment
 - Sector Secto
 - Sector Secto
 - Radiation environment

Specific Payload Requirements

> Documentation to be followed:

- Sartolomeo User Guide (provided in the AO documentation)
- ArgUS / Payload Interfaces Definition Document (will be provided after selection)

> Design suggestions:

- └ Tailor your idea to the environment and interfaces
- Simplify your design as much as possible
- No pre-qualified hardware expected, qualification will be done through dedicated testing of the integrated hardware

Contact

Dr. Christian Steimle Service and Business Manager Bartolomeo Airbus Defence and Space, Bremen, Germany Email: per-christian.steimle@airbus.com Mobile: +49 151 277 677 74 https://de.linkedin.com/in/dr-per-christian-steimle-46217b8a

Simone Sasse

Key Account Manager International Organizations Airbus Defence and Space, Ottobrunn, Germany Email: simone.sasse@airbus,com Mobile: +49 160 708 56 91 https://www.linkedin.com/in/simone-sasse-639a46b2