

Advanced Technologies

Vhen extremely low temperatures nable human space flight, indamental physics and global

United Nations/Costa Rica Workshop on Human Space Technology, 7-11 March 2016 Pierre Crespi, Martin Staempflin, Benoit Chidaine

- Air Liquide Advanced Technologies in Brief
- Introduction to Cryogenics
- Cryogenics in Space today
- Other Cryo technologies necessary for Human in space and available on ground

AIR LIQUIDE ADVANCED TECHNOLOGIES IN BRIEF

Since 1962, AL-aT is the **high technology** subsidiary of the Group dedicated to **innovation** and **industrial solutions** in the field of **cryogenics** and **gas engineering**

A fast cycle from the innovative idea to the market since all competencies/capabilities are available in Sassenage :

- •R&D
- •Design
- Manufacturing
- Factory Test
- Installation & start-up
- After Sales

Space

Gas &

Cryogenics

Aeronautics

New Energies

Around 700 employees About 140 m€ turnover in 2015

2016 March 8th

AL-aT's site in Sassenage, France

Air Liquide, world leader in gases, technologies and services for Industry and Health

CRYOGENICS IN SPACE

What is it? Cryogenics is a set of technologies and know-how needed to reach very low temperatures,

- □ Usually below the permanent gases boiling point, i.e. around -180°C =93K
- \rightarrow Initially developed for **air liquefaction** in order to separate O₂ & N₂

For what purpose?

- Liquefaction, purification, handling and storage of most gases (O₂, N₂, H₂, Ar, Xe...)
- Many space applications:
 - Launchers (A5, Delta, HII,...)
 - IR focal planes cooling
 - food and biological samples storage
- But also:
 - Healthcare
 - Submarines air purifying
 - Cryo milling, Superconductivity, ...and many others....

 $(0 K = -273^{\circ} C)$

2 - Cryogenics in Space today cryo for space flight cryo for global monitoring cryo for fundamental physics

CRYO FOR SPACE FLIGHT

25 T of LH2 / 150 T of LOX Ø 5.4 m ; h 25 m Mini Th. = 1.3 mm

LH₂ Tank 2,7 T of LH2 Ø 5.4 m; h 3.5 m Mini Th. = 1.6 mm 215 Launches for Ariane during 50 years more than 360 tanks delivered

Main StorageLOx/LH₂ tank

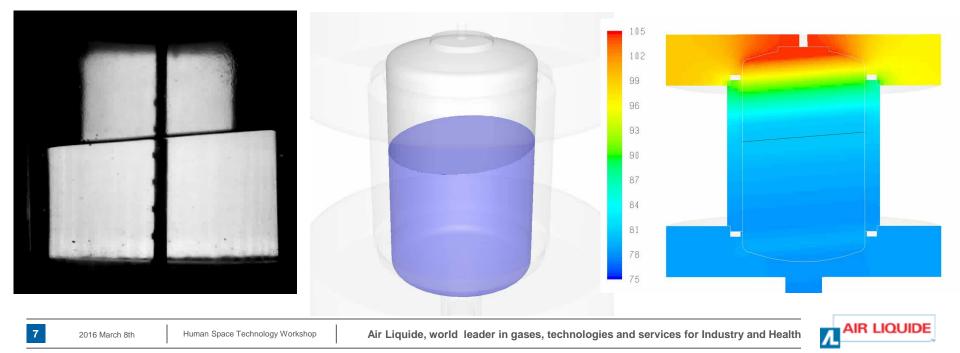
Fluids liquefaction, feeding

Cryogenic arms for ESC

2016 March 8th

LOxTank 12 T of LOX

Liquid He Tank 166 kg of LHe Ø int 1.4 m Mini Th. = 4.3mm


& Storage

Ø 2.6 m; h 2.8 m Mini Th. =1.4 mm

CRYO FOR SPACE FLIGHT: FLUIDS IN µGRAVI

- Cryogenic fluid behavior prediction is at utmost importance to optimize the design of future launchers and any reignitable spacecraft.
- For more than 10 years AL is developing simulation tools (fluid dynamics, temperature, pressure) correlated with µg tests such as magnetic levitation, 0g flights or specific launch experiment (Cryofenix)

CRYO FOR GLOBAL MONITORING

Earth Observation,
Weather forecast
Fire Detection
Understanding of climate change : CO2, Biomass, vegetation

1 FM delivered, 23 FM's to follow

Cooling of infra red sensors High Stability, High reliability Very low micro vibrations

3W@50K Pulse Tube Cooler

CRYO FOR FUNDAMENTAL PHYSICS IN SPACE: PLANCK

Survey of the CMB by PLANCK (2009 -2011)

ESA Mission

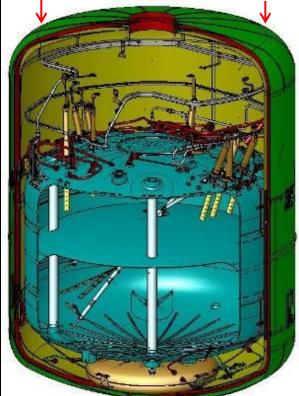
Courtesy ESA, CNES, CNRS & TAS

101 mK

Dilution of ³He into ⁴He at 4K / 20 b creates cold from 1,6 K to 0,1 K

- Launch lock mechanism using shape memory alloy
- Thermalization of all sensor wires from 1,6 K down to 0.1K Passive damping of temperature fluctuations with rare earths 4 onboard storage spheres @300b / 51 L
 - 2.5 year autonomy (extended)
 - 20,000 hours continuous operation : no failure!

CRYO FOR FUNDAMENTAL PHYSICS IN SPACE: HERSCHEL


Air Liquide's contribution to Herschel ESA mission

- Detailed **design** & **manufacturing** of :
 - He I & He II tanks (He II is superfluid, H I is normal)
 - Vapor cooled thermal shields
 - Thermal links
 - Piping
 - All assembled in class 100

Air Liquide, world leader in gases, technologies and services for Industry and Health

2400 L superfluid He tank 3.5 year autonomy

1.6K during all the mission

0

CRYO FOR FUNDAMENTAL PHYSICS IN SPACE: FREEZERS)

- Cryogenic storages (below -80 C or 190 K) are mandatory to perfectly preserve scientific biological samples or food for long duration mission (>3 months)
- Example for in the International Space Station (ISS) :
 - Transportable cryogenic freezer at 80 K (-183° C) to store more than 1000 biological vials
 - 11 liters, cooled by a Stirling machine, glove box compatible

■ MELFI freezer at 190 K (-80° C)

■ Science storage (from +4C to -80° C)

Turbo Brayton cooler built by Air Liquide

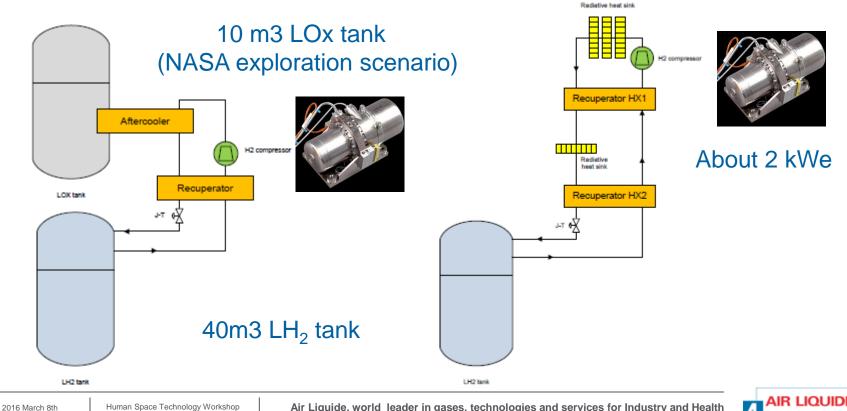
10 years in orbit, 3 freezers, 120 000h of cumulated lifetime

3 - Cryo technologies available for **Human in space** CABIN AIR PURIFICATION LONG RANGE VEHICLES PROPELLANT TANKS ENERGY STORAGE ENERGY PRODUCTION SUPERCONDUCTIVITY

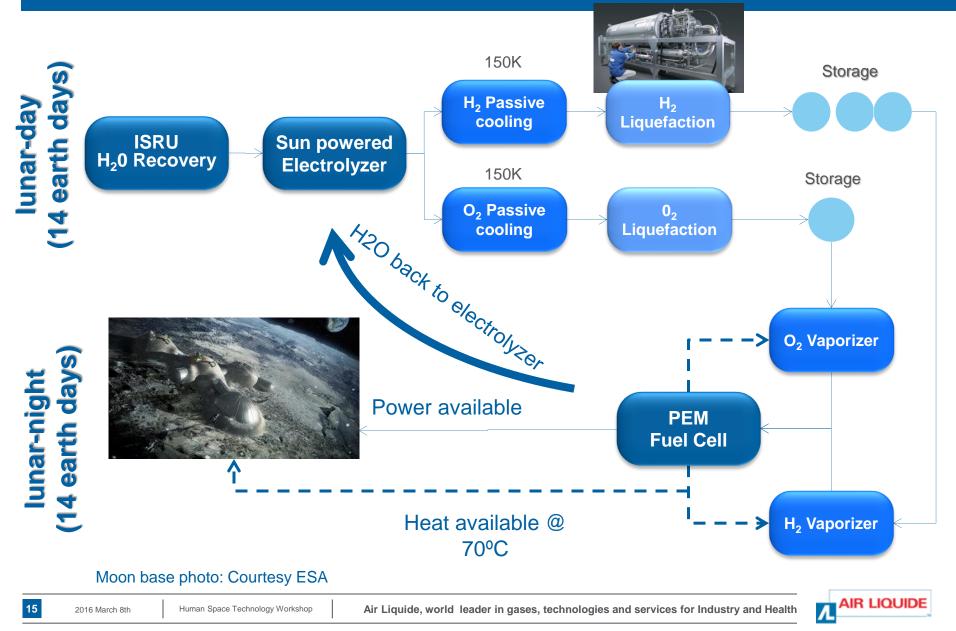
CABIN AIR PURIFICATION

- Based on a Cryogenic cristalyzer
 - The air cabin can be purified from CO₂ and VOC at very good level when passed onto a heat exchanger cooled down to 110 K,
- Case of sub-marine atmosphere purification
 - Prototype with 2 large pulse tubes, adequate for 8/10 crew members
 - Provides air at 50 ppm CO₂
 - Releases pure CO2 to be regenerated by Sabatier reactor for example
- Application to a space system
 - For 5 crew members 3 to 5 machines twice bigger than our current earth observation PT would be necessary

Crygenic crystalizer breadboard for 10 crewmembers

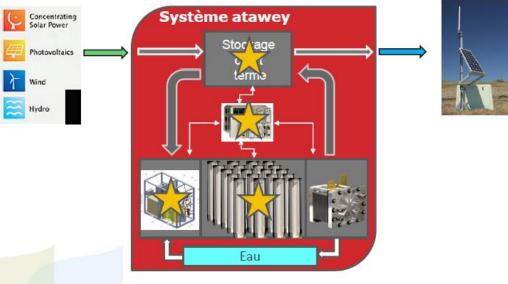


12 W@110 K, 200 We


CRYO FOR LONG RANGE VEHICLES PROPELLANT TANKS

- Liquid H₂ (20 K) boils-off
- Oxygen being at 90 K, can be cooled passively to avoid boil-off losses
- LH₂ loss can be reduced with cryocoolers (**ZBO concept**) for long -term mission spacecraft.

Air Liquide, world leader in gases, technologies and services for Industry and Health

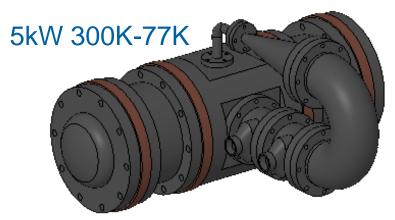

ENERGY STORAGE: AN EXAMPLE FOR THE MOON

HYDROGEN ENERGY STORAGE PLANT

- Plant prototype working in Sassenage since july 2015
- 4-20 MWh/year (1.5 kW PEMFC)

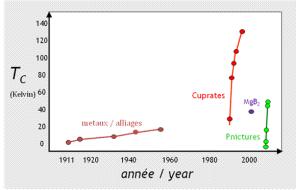
ENERGY PRODUCTION : ONBOARD AND ON A BASE

Solar concentration and Stirling engines



Stirling à Radio-isotope NASA

Cryogénérateur Miniature Pulse Tube


LN2 tanks energy recovery

SUPERCONDUCTIVITY

When very high electrical power density systems are required, like intense magnetic fields, it is necessary to cool down some electrical parts below a given critical temperature Tc in order to suppress any Joule dissipation.

Superconductive materials have been discovered working under different Tc levels,

Sub-cooled liquid Nitrogen for power transportation (Long Island Power Authority's project) YBaCuO/BSCCO cables at Tc< 70K

Cryo-cooler : Helium refrigerator

Cryo-cooler : Turbo-Brayton

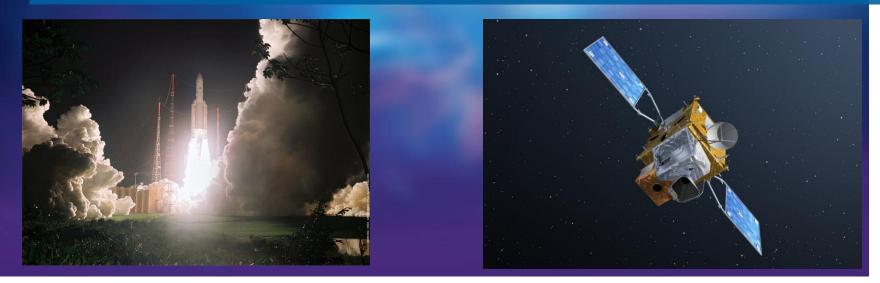
Liquid Helium for CERN-LHC NiTi magnet at Tc< 4 K with

Helium gas or liquid Hydrogen for MgB₂ cable at Tc 20K at CERN

The test station, located in one of CERN's laboratories. The black tube contains the prototype MgB2 superconductin cable and its cryogenic envelope. (Photo credit: CERN).

Air Liquide, world leader in gases, technologies and services for Industry and Health

CONCLUSION


- Cryogenic temperatures are already well mastered for :
 - Space launchers propulsion
 - Infrared detectors cooling down to 50mK for space astronomy
 - Long term storage of critical supplies (O2, H2, etc...), food and biological samples
- Some ground based technologies are existing and suitable for space
 - Hydrogen power plant (production, storage, electricity)
 - Cryogenic Air purification systems
 - Energy storage and recovery (Electrolyser, liquefier, FC,..)
 - Cable cooling for superconductivity
- Cryogenics are key technologies for Human in space
- Air Liquide Advanced Technologies is ready to continue developing and bringing them into space

ESA courtesy

Advanced Technologies Thanks for your attention

