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I. Introduction  

 

In this report, the activities carried out during the Drop Tower Experiment Series 2016 are 

documented. The final prototype design, experiment setup and execution are addressed in 

this document.  

 

The general objective of the work was to design and implement an experiment in 

microgravity to analyze the influence of torsion, inertial, and reactive forces on a scaled 

robotic system, which is on a rotating, non-inertial frame of reference. For this experiment, 

the robotic manipulator was designed within the considerations and requirements of the 

Drop Tower at the Cener of Applied Space Technology and Microgravity (ZARM). The 

implementation of the robotic manipulator prototype was carried out and then adapted to 

the drop tower chamber with centrifuge. With a predefined movement sequence, 

measurements of forces on the arm were carried out by means of load cell sensors and an 

inertial measurement unit (IMU), both in microgravity conditions and normal earth 

conditions. During the experiment series, four drops were successfully completed, 

gathering information from sensors and cameras recording the experiments. The results 

were analyzed and compared with respect to theoretical expectations and a conference paper 

publication was prepared, targeting a submission to the International Aeronautic Congress 

2017. 

 

 

II. Design of the Scaled Robotic Manipulator 

 

The experiment consists of a small, articulated robotic manipulator, which was attached on-

board to a reduced-gravity centrifuge (rotating platform). The setup consists of a 3 degree 

of freedom (DoF) manipulator arm, mounted on an aluminum platform which is attached 

to the rotating base plate of the centrifuge. Through this experiment, the effect of forces 

over the end effector and base of the robot was studied and compared with simplified 

analytical models.  

  

Together with this document, the design drawings are provided (see link in Appendix C). 

Figures 1 and 2 are an extract of the design files, where the view of the setup with the two 

arms and a detail of a single arm are shown, respectively. With respect to the preliminary 

designs, the mechanical model suffered modifications to simplify the fabrication process 

and to adapt it to the actual geometry of the motors and other electronics components bought. 

The electronic control was placed on top of the plate, which is a more convenient location 

for the experiment setup at the cabin.  
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Figure 1: 3D Model of the robotic arm prototype 

 
 
 
 
 
 
 
 
 

Figure 1: Robotic arm manipulator setup, sketch and dimensions (units in millimeters). 

 

 

 
Figure 2: Sketch of the robotic arm. 

 



  

  

  4 of 18  

 

The final block diagram of the electronic control for the robotic manipulators is shown in 

Figure 3, where two independent identical controllers for each arm are depicted. The power 

requirements were defined as 5 V and 12 V supplies with a current capacity of 500 mA and 

12 A, respectively.  The final component list is detailed in Table 1 and links to additional 

information are provided in Appendix B.  

 

 
 
Figure 3: Updated block diagram of the electronic control system for both robotic manipulators used 

in the experiment.  
 
 

The main controller is an Arduino Mega Board and several preliminary tests were made with 

the purchased components. Although the implemented system worked properly, the 

microcontroller velocity limits the possibility to create complex movement sequences and to 

implement a stable loop control. In the final implementation, four microcontrollers were used 

to acquire the sensor information separately in order decrease the processing load of the 

boards controlling the motors. Big easy Drivers were used as interface between the 

processing unit and the stepper motors, with a maximum static current of about 2 Amperes 

per motor.  

 

The load cells used for the sensing at the base of each arm showed good sensitivity and 

acceptable precision, although they were not capable to measure the force during the impact. 

The cells are connected through the HX711 preamplifier modules to the controller. Encoders 

to monitoring the arm position were fabricated, however, they were not included in the final 

version due to insufficient microcontroller capacity during preliminary tests. For that reason, 

the arms were used in an open loop configuration.   
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Table 1: Electronic component list 

Amount Component 

3 Arduino Mega 2560 

6 Bipolar Stepper Motor 42BYGHM809  

6 Big Easy Driver 

2 IMU Sensor Module: Adafruit 9-DOF IMU L3GD20H + LSM303 

8 Straight bar load cell TAL220 

8 
Load Cell Amplifier - HX711 

 

Analytical Background 

 The expected observations for the experiments are justified with the analytical relations 

detailed in this section. Let suppose two sets of coordinate axes. Let one be the “fixed” or 

inertial axes, and let the other be an arbitrary frame that may be in motion (rotating system) 

with respect to the inertial system.  The relationship between the position vector 𝑟´⃗⃗   of the 

inertial system and the position vector 𝑟   of the rotating system is given by:  

 

𝑟´⃗⃗  =  𝑟 + 𝑅⃗ ,      (1) 

 

where the vector 𝑅⃗  locates the origin of rotating system in the fixed system. 

If a point P moves there will be the relationship between velocity in the fixed system and 

velocity the rotatory system: 

(
𝑑𝑟 

𝑑𝑡
)
𝑓𝑖𝑥𝑒𝑑

=  (
𝑑𝑟 

𝑑𝑡
)
𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔

+ 𝜔⃗⃗  × 𝑟      (2) 

 

where 𝜔⃗⃗  : angular velocity due to the rotation of axes and 𝜔⃗⃗  × 𝑟  : velocity due to rotation of 

moving axes.  

 

The Newton´s equation for inertial systems is obtained by time derivation of (2): 

 

𝐹 = 𝑚 𝑎 𝑓𝑖𝑥𝑒𝑑 = 𝑚 (
𝑑𝑣⃗ 

𝑑𝑡
)
𝑓𝑖𝑥𝑒𝑑

.     (3) 
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This equation implies: 

 

 (
𝑑𝑣⃗ 𝑓

𝑑𝑡
)
𝑓𝑖𝑥𝑒𝑑

= (
𝑑𝑉⃗⃗ 

𝑑𝑡
)
𝑓𝑖𝑥𝑒𝑑

+ (
𝑑𝑣⃗ 𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔

𝑑𝑡
)
𝑓𝑖𝑥𝑒𝑑

+ 𝜔⃗⃗  ̇ × 𝑟  +  𝜔⃗⃗  × (
𝑑𝑟 

𝑑𝑡
)
𝑓𝑖𝑥𝑒𝑑

  

 

and we can identify that: 

 

(
𝑑𝑣 𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔

𝑑𝑡
)

𝑓𝑖𝑥𝑒𝑑

=  (
𝑑𝑣 𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔

𝑑𝑡
)

𝑅𝑜𝑡𝑎𝑡𝑜𝑟𝑦

+ 𝜔⃗⃗  × (
𝑑𝑣 𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔

𝑑𝑡
)

𝑓𝑖𝑥𝑒𝑑

= 𝑎 𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔 + 𝜔⃗⃗ ×𝑣 𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔  

and: 

𝜔⃗⃗  × (
𝑑𝑟 

𝑑𝑡
)

𝑓𝑖𝑥𝑒𝑑

= 𝜔⃗⃗  × (
𝑑𝑟 

𝑑𝑡
)

𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔

+ 𝜔⃗⃗  ×(𝜔⃗⃗  ×𝑟 ) =  𝜔⃗⃗  × 𝑣 𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔 + 𝜔⃗⃗  ×(𝜔⃗⃗  ×𝑟 )  

 

Then from (3): 

 

𝐹 = 𝑚 𝑎 𝑓𝑖𝑥𝑒𝑑 

= 𝑚 (
𝑑𝑉⃗⃗ 

𝑑𝑡
)
𝑓𝑖𝑥𝑒𝑑

+ 𝑚𝑎 𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔 + 𝑚 𝜔⃗⃗  ̇ × 𝑟 + 𝑚 𝜔⃗⃗  ×(𝜔⃗⃗  ×𝑟 ) + 2𝑚 𝜔⃗⃗ ×𝑣 𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔     (4) 

 

where: 

 

𝑚𝑎 𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔:   effective force in the rotating system (the robotic arm). 

 

𝑚 (
𝑑𝑉⃗⃗ 

𝑑𝑡
)
𝑓𝑖𝑥𝑒𝑑

:   Translational (between axes) term. 

 

𝑚 𝜔⃗⃗  ̇ × 𝑟 :   Angular acceleration term. 

 

𝑚 𝜔⃗⃗  ×(𝜔⃗⃗  ×𝑟 ):  Centrifugal force term (non-inertial force). 

 

2𝑚 𝜔⃗⃗ ×𝑣 𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔 :  Coriolis force term (non-inertial force). 

 

From (4) we can obtain the effective force for an observer in the rotating system: 

 

𝑚𝑎 𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔 

= 𝐹 −  𝑚 (
𝑑𝑉⃗⃗ 

𝑑𝑡
)
𝑓𝑖𝑥𝑒𝑑

−  𝑚 𝜔⃗⃗  ̇ × 𝑟 − 𝑚 𝜔⃗⃗  ×(𝜔⃗⃗  ×𝑟 ) − 2𝑚 𝜔⃗⃗ ×𝑣 𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔  (5) 

 

From (5) it is straightforward that the dynamical variables will be affected by means of 

rotation system. When (5) is determined, we can obtain the velocity and position vectors by 

integrating in time: 
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𝑣 𝑒𝑓𝑓 = ∫𝑎 𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔  𝑑𝑡 

𝑟 𝑒𝑓𝑓 = ∫𝑣 𝑒𝑓𝑓  𝑑𝑡 

In our case, we have: 

 

𝑚 (
𝑑𝑉⃗⃗ 

𝑑𝑡
)
𝑓𝑖𝑥𝑒𝑑

= 0 (𝑅⃗ : It does not change with time). 

𝜔⃗⃗ =  𝜔 𝑘̂   (It does not change with time). 

𝜔⃗⃗  ̇ = 0  
 

Then: 

𝑚𝑎 𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔 = 𝐹 − 𝑚 𝜔⃗⃗  ×(𝜔⃗⃗  ×𝑟 ) − 2𝑚 𝜔⃗⃗ ×𝑣 𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔  (6) 

 

As a first approach to describe the theory behind the behavior of the proposed system, it will 

first be assumed that each arm can be treated as a particle with all its mass on its center of 

mass.  

 

To calculate the angular velocity of the disk, we must first know how much spin "artificial" 

gravity we want to achieve. An expected number would lay in the range between 0.5g and 

1g. This spin gravity value corresponds to the centripetal acceleration value of the object in 

the system, which is given by equation (7)  

 

𝑎𝐶𝐸𝑁 = 𝜔2 𝑅                                                                  (7) 
Assuming, for instance 1g: 

𝑎𝑔,𝑠𝑝𝑖𝑛 = 1 𝑔                                                                  (8) 

 

Equating (7) and (8), we finally find the expression which describes the angular velocity of 

the disk to produce the desired value of spin gravity at a given distance. 

   

 𝜔 =  √
𝑔

 𝑅

2
                                                                     (9) 

 

The turntable radius is approximately 0.27m, but the arm's center of mass is at an approximate 

distance of 0.0935 m with respect to the center of the platform (Figure 4). Computing this 

value in equation (9), at g = 9.82 m/s2 gives us the angular velocity required  

 

𝜔 = 10.25
𝑟𝑎𝑑

𝑠
= 98

𝑟𝑒𝑣

𝑚𝑖𝑛
. 

 



  

  

  8 of 18  

 
Figure 4. Lateral view draw of the robotic arms on the centrifuge plate (units in millimeters). 

 
 

Any moving object which moves within a rotating frame of reference will be exposed to an 

additional inertial force called Coriolis force, which is given by equation (10). Note that the 

force depends on a cross product of two vectors. 

 

 𝐹𝐶𝑂𝑅 = 2𝑚 (𝜔 𝑥 𝑉𝑅)                                                           (10) 
 

where 𝑉𝑅 is the velocity of the object with respect to the rotating frame. The cross product 

gives a vector which is both perpendicular to the angular velocity and the velocity of the 

object moving on the rotating frame. For this analysis, we are considering the velocity of the 

manipulator's center of mass, while the manipulator is being operated. The manipulator 

should do all the programmed movements within 2 seconds during the free fall, in order to 

have enough time to return to a safe position before impact. Assuming the center of mass 

moves about 5cm during the extension movement of the arm, we can calculate its average 

velocity.  

𝑉𝑅 =
∆𝑋

∆𝑇
=

0.05𝑚

2𝑠
= 0.025

𝑚

𝑠
 

 

Figure 9 shows the direction of both accelerations and hence forces, due to the centrifugal 

and Coriolis forces. It also shows the velocity vector of the center of mass according to the 

proposed movement. The moving part of the assembly (not considering the motors) will have 

a mass of about 1kg. We may now calculate from equation (10) an expectable value of 

Coriolis force: 

 

𝐹𝐶𝑂𝑅 = 2 ∗ 1𝑘𝑔 ∗ (10.25
𝑟𝑎𝑑

𝑠
∗  0.025

𝑚

𝑠
) = 0.5125 𝑁  

0.5125 𝑁

9.82 𝑚/𝑠
= 52.2 𝑔𝑟𝑎𝑚𝑠 
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Figure 5. Top view of the structure with induced acceleration vectors on one arm. 

 

Now, to measure the reactions at the base, which will be measured by the strain gauges, an 

equilibrium analysis must be done. Considering Figure 6, and assuming equal and opposite 

vertical reactions for this first approach, we get the momentum equilibrium equation as seen 

from this plane: 

 

∑τ = 0 = −𝐹𝑐𝑜𝑟 ∗ ℎ𝑐𝑚 − 𝐹𝑐𝑒𝑛 ∗ ℎ𝑐𝑚 + 2 𝑅𝑌 ∗ 𝑥𝑐𝑚 = 0                                      (11) 

 

 𝑅𝑌  =  
ℎ𝑐𝑚 (𝐹𝑐𝑜𝑟 + 𝐹𝑐𝑒𝑛)

2 𝑥𝑐𝑚
                                                                   (12) 

where  

 

𝐹𝑐𝑒𝑛 = 𝑚  𝜔2 𝑅                                                                            (13) 
 

and 

𝐹𝑐𝑒𝑛 = 10.252 ∗  1 ∗  0.0935 𝑚 = 9.82 𝑁  
 

Finally:  

 

𝑅𝑌  =  
189.4 𝑚𝑚 (0.52 𝑁 + 9.82𝑁)

2 ∗ 77.5𝑚𝑚
= 12.6 𝑁 

 

 

Which is about the equivalent of 1.3 kg acting on the center of mass. If the manipulators 

position is changed, the centripetal acceleration direction will also change with respect to the 

arm. The effect of just the Coriolis force in this case, with no centripetal acceleration acting 

on this plane, would be of 0.64 N, which is about 65 grams, and still is a considerable amount 
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with regard to the total weight of the arm. These reactions should be sensed by the load cells, 

but having a better dynamical prediction.   

 

 
Figure 6: Expected reactions on one arm base. 

 

 

III. Integration and Planning of the Experiments 

 

An implementation of the mechanical pieces for one robotic arm were printed in ABS as 

preliminary verification of the design. After that, the parts were fabricated in Aluminum and 

Nylon; the arms were finally assembled, integrating the motor and sensors. First system tests 

were performed in Costa Rica to verify the functionality of the system. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a)                                                                           (b) 

Figure 7. Mechanical CAD design of the prototype: (a) complete system on the centrifuge plate. (b) 
Single arm detail.  
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The final prototype setup included two arms, symmetrically located with respect to the 

central point of the centrifuge plate of the capsule. Each arm was about 30 cm long and had 

a 50g load on its end extensor, with an approximate total weight of 1.7 kg per arm. This 

configuration was selected with the aim to distribute the load more evenly in the interior of 

the capsule. Moreover, the utilization of two arms provides redundancy to the measurements 

taken during the experiment and allow the establishment of a comparison basis for the cases 

when the two sets are collected.  

 

Figure 7(a) shows the CAD prototype mounted on the plate, whereas Figure 7(b) shows the 

final configuration of one arm with sensors. The position of load cells, IMU, motors and 

mechanical arm load are depicted there. The first 2 DoF are controlled directly, but the third 

one is indirectly actuated through an extensor. The total weight of the prototype was about 5 

kilogram including the electronic control. 

 

 The integration of the prototype in the capsule was performed in Bremen during the third 

week of November (14-20). A carefully planning of the sequence allowed the definition of a 

routine to exercise the 3 DoF in different directions within the available 4.7 seconds of 

microgravity. Note that the catapult mode was not used since the experiment required the 

utilization of the centrifuge. System integration within the capsule was challenging due to 

the mechanical considerations of the impact. The electronic system need to be reinforced and 

damping foams need to be included since the motors were not able to hold during the final 

phase of the drop. As interface between the prototype and the tower control system, trigger 

signals were used start the movement sequence and data acquisition. Power supply was 

provided with the internal battery system in the capsule.  

 

 

 
Figure 8. Team members during the experiment integration in Bremen. From left to right: Moacir 
Fonseca-Becker, Renato Rimolo-Donadio, Carlos Mayorga-Espinoza, Nicole Chaves-Jiménez y 

Ernesto Corrales-Corrales. Photo courtesy of T. Könemann, ZARM. 
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The experiments were recorded with three cameras: a high-speed camera on the top of the 

prototype, and two lateral GoPro cameras. Figure 8 shows the team members at the drop 

tower during the integration phase. Figure 9 includes a photograph of the integrated prototype 

in the microgravity capsule.  

 

 

 
 

Figure 9. Integrated experiment setup. Image shows the two arms, electronic control, and side 
cameras integrated in the capsule. 

 
  

IV. Drop Tower Experiment Series  

 

The final stage of the project was the execution of the experiments, with four drops 

successfully executed. After preliminary tests on the integrated prototype, exercising the 

movement sequence, the four cases and the execution protocols were defined.   

 

For all the drops, a pre- or post-repetition of the experiment was carried out with Earth gravity 

conditions. The same movement sequence of the arms was used to be able to stablish a 

comparative basis among the different experiments. The two first drops were executed with 

the same configuration: a centrifuge speed of 30 rpm. This, with the aim to check the 

repeatability of the data retrieved from the sensors, which resulted consistent once analyzed. 

The third drop was performed without centrifuge, in order to see the behavior without rotation. 

Finally, the last drop was executed with a rotation speed of 35 rpm, the maximum speed at 

which the motors could hold the structure and perform the programmed sequence.  
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Figures 10 and 11 shows the integrated experiment being loaded into the tower and a view 

from the control room during the execution of one experiment, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Drop capsule with the experiment prototype integrated in its interior (left). Inner view of 

the drop path within the ZARM tower (right). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. View from the control room at the drop tower. The prototype can be observed on the left 
side, from the top camera view in the capsule. The trajectory of the capsule is registered with the 

additional cameras (right).  
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The main technical results obtained from sensor acquisition were condensed in the article: 

“Analysis of scaled robotic arm manipulators under microgravity conditions”, which was 

accepted, as an oral presentation, to the International Aeronautical Conference (IAC) 2017 

(http://www.iac2017.org/). As a contribution to that conference, the proceedings will be 

available at the IAF database (http://www.iafastro.org/publications/iac-papers/).  

 

Overall, the information registered from sensors was consistent and allowed the 

establishment of clear trends, which are reported in the paper. Nevertheless, the accuracy was 

not enough for correlation of results with a theoretical model from a quantitative perspective. 

One of the IMUs was defective and unable to record the data, whereas the second one could 

register the data, but had troubles stablishing the thresholds to set the reference sensor values, 

probably to mechanical instabilities and the metal enclosure present during the initialization. 

Good quality videos could be retrieved from the experiments and a selection of them is made 

available through the link in Appendix C.  

 

 

V. Conclusions & Outlook 

 

The project could be ended successfully and the feasibility of studying small robotic 

structures in microgravity conditions using a drop tower environment has been demonstrated. 

To the knowledge of the team members, this is the first time that an experiment involving 

robotic electromechanical systems has been carried out as part of the drop tower experiment 

series. Although the microgravity environment can be sustained just for a few seconds (4.7 

s), a carefully planning of the experiment allowed to retrieve relevant information from 

sensors and image devices.  

 

The project involved the design and implementation of the double manipulator prototype and 

its integration on the drop tower capsule, which was a challenging task due to budget 

limitation, workshop and electronic component suppliers in Costa Rica, and the complexity 

of the electronic system itself. Nevertheless, the integration of the experiment could be 

completed and a series of four drops was successfully executed. In Table 2 of the Appendix 

A, the executed work plan is provided as a reference of the tasks completed over time. The 

technical results have been used to prepare a conference manuscript, which was accepted for 

oral presentation to the International Aeronautical Congress (IAC) 2017, in Adelaide, 

Australia:  

 
N. Chaves-Jiménez, M. Fonseca-Becker, E. Corrales-Corrales, C. Mayorga-Espinoza, and R. 

Rimolo-Donadio, “Analysis of Scaled Robotic Arm Manipulators under Microgravity Conditions,” 

accepted, 68th International Astronautical Congress, Adelaide, Australia, September, 2017. 

 

Additionally, an informative article has been submitted for publication by a magazine at the 

Instituto Tecnológico de Costa Rica (TEC) with the aim to document the experience and to 

motivate the participation of Costa Rica teams in future HSTI initiatives.  

 

For future initiatives studying robotic manipulators, it is recommended to use high quality 

motors and precision mechanical parts to avoid problems regarding the mechanical setup and 

http://www.iac2017.org/
http://www.iafastro.org/publications/iac-papers/
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to ensure that the structure will support the final impact. In addition, high quality sensors, 

able to register more accurate data at higher speeds are also recommended. This is related 

also with the requirement of higher processing capacity, which might allow to execute the 

acquisition and control of the prototype simultaneously. The setup of the IMU needs to be 

also carefully planned and reviewed for future work. Its calibration might result difficult, in 

particular for the magnetometers due to the proximity of metallic structures.  
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Appendix A. Work Plan execution.  

 
Table 2. Work plan activities and current schedule for the execution of the project (EPR 2). 

 2016-17 

Activity Jun. Jul. Aug. Set. 

 
Oct. 

 
Nov. 

Dec. 
16 - 
Mar. 
17 

 

1. 

Submission of the first Experiment 

Progress Report (1 EPR, Thursday, June 

16) 

 
OK  

      

 

2. 

Critical Design Review (CDR) 
 

 
OK      

 
 

     

 

3. 

 

Component purchase, fabrication and 

assembly of the prototype for the 

experiment 

   
OK 

 
OK 

 
OK 

 

 
  OK 
 

  

 

4. 

 

Submission of the second Experiment 

Progress Report (2 EPR: Thursday, 

September 15) 

     
OK 

 

   

 

5. 

 

Experiment execution and adjustment 

under normal gravity conditions. 

    
 

 
OK 

 

 
OK 

 

 

 

6. 

Experiment integration: Tuesday-Friday, 

November 15th - 18th.  

 

      
OK 

 

 

 

7. 

Experiment Qualification: Monday, 

November 21st. 

 

      
OK 

 

 

8. Experiment series: Tuesday-Friday (one 

drop per day), November 22nd - 25th 

      
OK 

 

 

9. Final report and preparation of publication.        
OK 
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Appendix B. Electronic Component External Information Links.  

 

 

In this section, the updated list of electronic components used for the implementation of 

the robotic arms are listed, with the external links to their description. 

 

 Arduino Mega 2560:  https://www.arduino.cc/en/Main/ArduinoBoardMega2560 

 

 Bipolar Stepper Motor 42BYGHM809:  

http://cdn.sparkfun.com/datasheets/Robotics/42BYGHM809.PDF  

 

 Driver Motor: Big Easy Driver 11876: 

http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Robotics/BigEasyDriver11876.pdf  

 

 Adafruit 9-DOF IMU Breakout - L3GD20H + LSM303: 

https://www.adafruit.com/product/1714  

 

 Straight bar load cell TAL220: 

https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/TAL220M4M5Update.pdf   

 

 Load Cell Amplifier - HX711 

https://www.sparkfun.com/products/13230  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.arduino.cc/en/Main/ArduinoBoardMega2560
http://cdn.sparkfun.com/datasheets/Robotics/42BYGHM809.PDF
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Robotics/BigEasyDriver11876.pdf
https://www.adafruit.com/product/1714
https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/TAL220M4M5Update.pdf
https://www.sparkfun.com/products/13230
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Appendix C. Links to External Information. 

 

A selection of the recorded experiments can be downloaded with the following link (file size 

~600MB): 

https://tecnube1-

my.sharepoint.com/personal/rrimolo_itcr_ac_cr/_layouts/15/guestaccess.aspx?docid=07bf2

2fad4a564eaead66d75c7ba4d2ac&authkey=Aavkk8NgZL47zUeoFEyqvhg  

 

The design CAD files of the prototype can be found here: 

https://tecnube1-

my.sharepoint.com/personal/rrimolo_itcr_ac_cr/_layouts/15/guestaccess.aspx?docid=01529

d9a172a24bd09b03dea12e4e3f69&authkey=ATIOHgU1JRmlt3FTGMb1jaM  

 

The informative article in InvestigaTEC will be published here: 

http://revistas.tec.ac.cr/investigacion/ 

 

Temporarily, the electronic version of the magazine can be downloaded here: 

https://tecnube1-

my.sharepoint.com/personal/rrimolo_itcr_ac_cr/_layouts/15/guestaccess.aspx?docid=08634

876ddf6e4ca69e7154f79947c5e6&authkey=AeboTBWRUDcnqdJ61w7GEcY  

 

 

 

 

 

https://tecnube1-my.sharepoint.com/personal/rrimolo_itcr_ac_cr/_layouts/15/guestaccess.aspx?docid=07bf22fad4a564eaead66d75c7ba4d2ac&authkey=Aavkk8NgZL47zUeoFEyqvhg
https://tecnube1-my.sharepoint.com/personal/rrimolo_itcr_ac_cr/_layouts/15/guestaccess.aspx?docid=07bf22fad4a564eaead66d75c7ba4d2ac&authkey=Aavkk8NgZL47zUeoFEyqvhg
https://tecnube1-my.sharepoint.com/personal/rrimolo_itcr_ac_cr/_layouts/15/guestaccess.aspx?docid=07bf22fad4a564eaead66d75c7ba4d2ac&authkey=Aavkk8NgZL47zUeoFEyqvhg
https://tecnube1-my.sharepoint.com/personal/rrimolo_itcr_ac_cr/_layouts/15/guestaccess.aspx?docid=01529d9a172a24bd09b03dea12e4e3f69&authkey=ATIOHgU1JRmlt3FTGMb1jaM
https://tecnube1-my.sharepoint.com/personal/rrimolo_itcr_ac_cr/_layouts/15/guestaccess.aspx?docid=01529d9a172a24bd09b03dea12e4e3f69&authkey=ATIOHgU1JRmlt3FTGMb1jaM
https://tecnube1-my.sharepoint.com/personal/rrimolo_itcr_ac_cr/_layouts/15/guestaccess.aspx?docid=01529d9a172a24bd09b03dea12e4e3f69&authkey=ATIOHgU1JRmlt3FTGMb1jaM
http://revistas.tec.ac.cr/investigacion/
https://tecnube1-my.sharepoint.com/personal/rrimolo_itcr_ac_cr/_layouts/15/guestaccess.aspx?docid=08634876ddf6e4ca69e7154f79947c5e6&authkey=AeboTBWRUDcnqdJ61w7GEcY
https://tecnube1-my.sharepoint.com/personal/rrimolo_itcr_ac_cr/_layouts/15/guestaccess.aspx?docid=08634876ddf6e4ca69e7154f79947c5e6&authkey=AeboTBWRUDcnqdJ61w7GEcY
https://tecnube1-my.sharepoint.com/personal/rrimolo_itcr_ac_cr/_layouts/15/guestaccess.aspx?docid=08634876ddf6e4ca69e7154f79947c5e6&authkey=AeboTBWRUDcnqdJ61w7GEcY

