

Material Science Research: Thermophysical property measurement using levitation techniques in Microgravity

Jannatun Nawer

Douglas Matson (PI) Tufts University, USA SPACE 4SDGS

May 19th , 2021

UNOOSA Hyper gravity/Microgravity Webinar Series

About me			
B.Sc. in Aeronautical Engineering 2015 (MIST, Bangladesh)	M.S in Mechanical Engineering 2018 (Tufts University, USA)	PhD in Mechanical Engineering 2021 (Tufts University, USA) - Pure Metals - Industrial alloys	
Started space work in 2017 NASA grant NNX17AH41G	Ground based testing in 2018 at NASA MSFC ESL lab	Parabolic flight testing in 2019 with ESA TEMPUS EML	
	Space testing in 2020 collaboration with JAXA ELF		

Scientific goals and motivation

Support material development for space exploration, commercial, and industrial applications

- Casting - Welding

Provide high quality thermophysical properties for accurate modelling with predictive capability for

- Additive manufacturing

Improve manufacturing leading to better performance, sustainability and higher reliability

https://mars.nasa.gov/news/8912/say-cheese-on-mars-perseverances-selfie-with-ingenuity/

Why levitation in microgravity?

- Reduce contamination at high temperature
 - limits nucleation sites during solidification
 - free-surface ensures precise property evaluation
- Limit effects of buoyancy and sedimentation
- Provides extended duration of microgravity to complete experiment
- Better control of convection in space

Levitation Techniques

Containerless levitation techniques:

- Electrostatic levitation (ESL)
- Electromagnetic levitation (EML)

Investigated Materials and Properties

Pure metals - Gold (Au) - Platinum(Pt) - Zirconium (Zr)

Industrial superalloys - Inconel 718 - Inconel 625 - CMSX-10 - CMSX-4 Plus

Thermophysical properties of the melt: **Density, Thermal expansion, Surface tension**, **Viscosity**, Electrical resistivity, Thermal conductivity, Specific heat capacity

Methods

Density

- Volume is measured from the projected backlit image using high-speed camera
- Dynamic mass is tracked throughout the process

 $\rho = \frac{m}{V}$

- Droplet oscillation
 - Sample oscillates within a varying induced electric field in ESL and pulse excitation in EML
 - Sample resonant frequency is used for surface tension measurement
 - Time constant for decaying signal is used for viscosity measurements

$$\sigma = \frac{3\pi m f^2}{l(l-1)(l+2)} \\ \mu = \frac{\rho r^2}{(l-1)(2l+1)\tau}$$

Results

Space results are comparable to published literature values

Summary

- Space research utilizing levitation is a powerful tool for space exploration
- Levitation research takes advantage of the unique microgravity environment for accurate property measurement
- Space results shows good agreement with ground-based testing

Future goals

Inspire people to pursue Spacerelated research through my journey Finish my Ph.D. and work in STEM - Start my own research projects towards academia - Preferably in space related application

Help young researchers

Advice for those interested in Space Research

Space is accessible to everyone - It's not just for scientists and engineers Always look for opportunities to learn and apply

Be prepare to face unknown challenges when it comes to microgravity research Thank you! Any questions?

