UN FELLOWSHIP PROGRAM - DROPTES
@THE BREMEN DROP TOWER

Dr. Thorben Könemann
ZARM Drop Tower Operation and Service Company
UNOOSA Webinar, June 09, 2021
Content

- Bremen Drop Tower
- Drop Tower Experiment Series (DropTES)
- GraviTower Bremen Pro
FACTS ABOUT THE DROP TOWER BUILDING
• height of the Bremen Drop Tower: 146 m
• diameter of the concrete structure: 8 m
• stairs: about 600 steps until the top

FACTS ABOUT THE DROP TUBE
• height of the drop tube: 120 m
• distance of free fall: 110 m
• diameter of the drop tube: 3.5 m
• deceleration container: filled with 15 m³ of polystyrene pellets up to a height of 8.20 m
• experiment duration in microgravity:
 drop experiment - 4.7 s
 catapult experiment - 9.3 s (worldwide unique)
• maximum capsule speed: 168 km/h
• gross weight of standard capsule: 500 kg
• vacuum: 18 pumps draw out 1,700 m³ of air in 1.5 to 2 h
• pressure after evacuation: 10 Pa (0.1 mbar)
• achievable microgravity quality: 10^{-6} g
• number of drops or catapult launches: up to 3 times a day
Bremen Drop Tower

- Experimenter’s Integration Area / Payload Services
Bremen Drop Tower

- Experimenter’s Integration Area / Payload Services

Standard Capsule Versions:

- payload masses -

- catapult
- 165 kg

- short
- 265 kg

- long
- 225 kg
Bremen Drop Tower

RESEARCH AREAS

- Combustion
- Fundamental Physics
- Fluid Dynamics
- Astrophysics (Planet Formation)
- Materials Sciences
- Biology
- Hardware Tests
- Student Programs
- Chemistry

- *fundamental research*
- *technology development (mission preparations)*

FACTS AND FIGURES

- **start of operation:** September 1990
- **number of drops / catapult launches:** over 9000 performed
- **number of drop tower projects:** over 230 assisted
- **framework contractor of**
Bremen Drop Tower

RESEARCH AREAS

- Combustion
- Fundamental Physics
- Fluid Dynamics
- Astrophysics (Planet Formation)
- Materials Sciences
- Biology
- Hardware Tests
- Student Programs
- Chemistry

fundamental research

technology development

(mission preparations)

DROP YOUR THESIS!

REXUS / BEXUS
Content

- Bremen Drop Tower
- Drop Tower Experiment Series (DropTES)
- GraviTower Bremen Pro
Drop Tower Experiment Series (DropTES)

- **General Program Information**
 - UNOOSA - Access to Space for All Initiative
 - Annual Science Activity at the Bremen Drop Tower, Germany
 - First Cycle was initiated by UNOOSA, DLR, and ZARM in 2014
 - Executing Agency: United Nations Office for Outer Space Affairs (UNOOSA)
 - Supporting Agency: German Aerospace Center (DLR) Space Agency
 - Hosting Institution: Center of Applied Space Technology and Microgravity (ZARM)
Drop Tower Experiment Series (DropTES)

- General Program Information
 - open to student research teams from entities that are Member States of the United Nations
 - allows to realize a real microgravity research project
 - shall be an integral part of the student’s syllabus, e.g. as Bachelor, Master and/or PhD theses
 - follows space project guidelines (proposal, reports, reviews)
 - each drop tower experiment series consists of five drops or catapult launches
 - travel, accommodation, and drop tower utilization are sponsored
 - program language: English / program duration: usually 1 year
 - technical support by ZARM

- Fiber-Coupled Passively Cooled cw Diode Lasers
 - Features:
 - High optical output power of 45 W cw
 - Fiber core diameter: 400 \(\text{m} \) / 600 \(\text{m} \) (NA 0.22)
 - Long lifetime > 20,000 h, high reliability
 - Passively cooling with integrated TECs
 - Applications:
 - Pumping of solid-state lasers and fiber lasers
 - Material processing in industry
 - Medical applications
Drop Tower Experiment Series (DropTES)

- **Selection Process:**
 - proposal evaluation by selection board (UNOOSA, DLR, and ZARM)
 - one research team per DropTES cycle will be selected each year

- **Experiment Preparation (Home Laboratory):**
 - assisted by ZARM (consulting, drawings, manufacturing of hardware)

- **Experiment Series (Bremen Drop Tower):**
 - experiment integration (drop tower capsule) - first week
 - experiment drops or catapult launches - second week

Feb	->	June	July	Aug	->	Nov	->	Feb +1	May +1	June +1	Sep +1	
-----	----	------	------	-----								

- Announcement of Opportunity
- Selection
- Experiment Preparation
- PDR
- 1. Report
- CDR
- 2. Report
Drop Tower Experiment Series (DropTES)

Bremen Drop Tower

Drop Tower Experiment Series (DropTES)

GraviTower Bremen Pro
GraviTower Bremen Pro (GTB Pro)

- over 12 experiments per hour
- 2.5 s in microgravity
 - partial-g: Moon / Mars
- „rail-guided system“
 - rope drive
 (hydr. winches)
- standard capsule
 - synergy with Bremen Drop Tower
GraviTower Bremen Pro (GTB Pro)

- over 12 experiments per hour
- 2.5 s in microgravity
- standard capsule
 - synergy with Bremen Drop Tower
GraviTower Bremen Pro (GTB Pro)

- over 12 experiments per hour
- 2.5 s in microgravity
- standard capsule
 - synergy with Bremen Drop Tower
GraviTower Bremen Pro (GTB Pro)

- over 12 experiments per hour in low gravity
- standard capsule
- synergy with Bremen Drop Tower

2.5 s in microgravity - partial-g: Moon / Mars

rail-guided system - rope drive (hydr. winches)

standard capsule - synergy with Bremen Drop Tower
GraviTower Bremen Pro (GTB Pro)

Next Steps

- finalizing software, May - June, 2021
- assembling slider and subsystems, integration of slider and subsystems, June - August, 2021
- testing completed GTB Pro, September, 2021
- expected availability, end of Q3 / beginning of Q4, 2021

⇒ available for DropTES 2022
⇒ apply until June 30, 2021
⇒ drive dynamics better as simulated
Thank you very much for your Attention