7th IAA Planetary Defense Conference 26-30 April 2021, Online Event

Hosted by UNOOSA in collaboration with ESA

Session 1: Hera

Chairs: Mariella Graziano | Monica Lazzarin | Richard Moissl

Presenters: P. Michel | M. Küppers | F. Topputo | Ö. Karatekin

The ESA Hera mission: planetary defense and science return

eesa

hera

() OBSERVATOIRE

DE LA CÔTE D'AZUR

UNIVERSITÉ CÔTE D'AZUR

Patrick Michel

Université Côte d'Azur Observatoire de la Côte d'Azur CNRS, Lagrange Lab, Nice, France

On behalf of the Hera Science Team

CNrs

7th IAA Planetary Defense Conference

AIDA international collaboration

Hera spacecraft, payloads and 2 Cubesats

- Asteroid Framing Camera
- LIDAR (PALT)
- Thermal Infrared Imager (TIRI)
- Hyperspectral Imager (Hyperscout-H)
- Juventas Cubesat (internal structure, gravity field, surface properties)
- **Milani Cubesat** (Mineralogy, space weathering, dust detection, gravity field)

+ ISL and RadioScience

Dimorphos vs Ryugu (Hayabusa2)

Hera mission firsts

~160m

- First rendezvous mission to a binary asteroid
- First characterization of an asteroid in an intriguing size range
- First radar sounding (internal structure) of an asteroid
- First full scale cratering physics experiment (with DART)

Hera in the context of Hayabusa2 and OSIRIS-REx

 First detailed characterization and surface response of 2 primitive asteroids in different gravity conditions

- •Ryugu is 900 meter wide
- •Bennu is 500 meter wide

Credits: NASA/Goddard/University of Arizona

- Dimorphos is ~ 3 times less wide than Bennu
 - Another step in low gravity levels

 Possibility to understand how some processes scale with gravity down to the low-g of Dimorphos

Dimorphos: in a very interesting size range

First detailed characterisation (including interior) of an asteroid at the transition between strength (cohesion) and gravity-dominated bodies

New knowledge in our understanding of asteroid geophysics and impact response (with DART)

Didymos and the prevalence of « spinning tops »

Credit: JAXA, University of Tokyo, et al.

Credit: NASA

- Ryugu and Bennu are top shapes possibly formed early by disruption/reaccumulation !!! (Michel, P. & Ballouz R.-L. et al. 2020)
- But both Ryugu and Bennu are single!
- What does a top shape binary primary look like?

First detailed investigation of a binary asteroid

15% of NEAs are binaries

- YORP mass shedding?
- Are Didymos and Dimorphos rubble piles?

Key knowledge to understand Solar System accretion processes

- First asteroid visited near disruption limit
- Insights on formation or disruption of planets

Spin-up Zhang et al. 2021, Icarus 362

1998 QE2

2004 BL86

2014 JO25

Hera will measure the outcome of a cratering impact at actual asteroid scale

Cratering physics: Hayabusa2 versus Hera

Hayabusa2 Small Carry-on Impactor April 5, 2019

Arakawa et al. 2020, Science

Cratering physics: Hayabusa2 versus Hera

Hayabusa2 Small Carry-on Impactor April 5, 2019

Arakawa et al. 2020, Science

Cratering physics: Hayabusa2 versus Hera

Arakawa et al. 2020, Science

The large size of the crater can only be explain if the surface has no cohesion, which is a surprize! Strong implications on surface age

What about a 165 m-size body? And how does cratering scale with impact speed (from 2 to 6 km/s)?

Understanding collisions in space

Planetesimal formation

Collisional accretion

EARLY PHASES

Giant impacts

Asteroid families

Michel & Richardson 2013

Collisional disruption

LATE PHASES

Juventas 6U Cubesat

Landing on Dimorphos

- Bouncing properties
- Mechanical properties

Direct interaction with the surface is the only way to determine its often counter-intuitive response!

Hera: a mission of "firsts"

- First rendezvous with a binary asteroid and smallest asteroid ever visited
- First detailed measurements of asteroid cratering physics in the impact speed regime of asteroid collisions
- First deep-space Cubesats for very close asteroid inspection and first internal structure probing
- First Cubesat landing on a 160 m-size asteroid

Hera: planetary defense and science

Asteroids are fascinating:

- Sources of high interest of different communities (science, planetary defense, mining)
- Whichever is the primary objective to explore them (here, planetary defense), all those communities will benefit from the gained knowledge

Hera is fascinating:

- First binary asteroid rendezvous and full characterisation, including subsurface/interior properties, and documentation of an impact outcome with NASA DART
- European contribution to planetary defense, concretizing ESA's pioneering initiative in the early 2000s starting with the Don Quijotte concept
- Great team and community actively working for it, promising amazing discoveries!

Hera Science Team

+ International (US/Japan) members

Common AIDA (DART +Hera) Working groups

THANK YOU

Hera Measurement Goals and Payload

Presented for The Hera Team

Michael Küppers ESA/ESAC

26 April 2021

→ THE EUROPEAN SPACE AGENCY

- 1. Demonstrate the deflection of the target -> DART, Groundbased
- Measure the efficiency of the momentum transfer from projectile (DART) to target (Dimorphos) -> Hera, Groundbased
- 3. Characterize the target -> Hera

Dimorphos mass x ΔV = momentum + momentum (ejecta) = momentum x β

Efficiency $\boldsymbol{\beta} = \frac{\text{Dimorphos mass x } \Delta V}{\text{momentum}}$

2 unknowns in the momentum equation: Dimorphos mass and $\boldsymbol{\beta}$

In the European space agency

Hera Measurement Goal 1: Mass of Dimorphos

- Measurement of the "Wobble" motion of Didymos due to the gravity of Dimorphos
- Supporting observations by Radio Science (spacecraft deflection due to Dimorphos gravity)

Measurement Goal 2: Dynamics of the Didymos system

Additional contribution to β : Momentum transfer into rotational motion = > Need for determination of orbital and spin parameters, including

possible libration of Dimorphos induced by DART impact

Hera Measurement Goal 3: Properties of Dimorphos (for scaling of the impact outcome to other objects)

_ _ ■ ■ + 11 ■ ₩ Ξ 1 ■ ₩ Ξ 1 ■ ₩ Ξ 1

Hera Measurement Goal 3: Properties (Example material strength)

→ THE EUROPEAN SPACE AGENCY

Hera Measurement Goal 4: Shape and Volume of the Impact Crater, spectral comparison to bulk asteroid

Unique opportunity to verify impact models and experiments as impactor and crater are both known!

Hera Payload

 Asteroid Framing Cameras (AFC) Broadband, pan-chromatic visual imager 5.5 deg. FoV 1m/pixel from 10 km 	 Planetary Altimeter (PALT) Laser Range Finder Wavelength 1.5 μm footprint 1 mrad (1m from 1 km) operating frequency up to 10 Hz)
 Thermal InfraRed Imager (TIRI) Contributed by JAXA, Wavelength range 7 -14 µm, 6 filters Field of view 13.3 X 10.6 deg. 2.3 m/pixel from 10 km 	 Hyperspectral Imager (Hyperscout-H) Visible spectral imager 15.5 X 8.3 deg. field of view (TBC) 1.3 m/pixel from 10 km Spectral range and resolution TBD
= = + = ⊆ = = = = :	👝 💿 🚺 💳 🛨 💥 🚍 🦢 🔶 → THE EUROPEAN SPACE AGENCY

Hera Payload (2)

Milani Cubesat with

1. ASPECT: Visual and near-IR Fabry-Perot imaging spectrometer

- Spectral range 0.5 2.5 µm
- Spectral resolution < 40 nm (visible < 20nm)
- 2 m/pixel from 10 km
- 2. VISTA: Thermogravimeter

- Dust detector
- Composition analysis (water, organics)

Juventas Cubesat with

1. Low-Frequency Radar (LFR)

- Frequency 50-70 MHz
- Resolution 10-15 m
- 2. Gravimeter (GRASS)

- Dynamic range
 5 * 10⁻⁴ m/s
- Sensitivity
 5 * 10⁻⁷ m/s

Radio Science Experiment

Utilizes
 Hera->earth link
 and
 Intersatellite link
 Hera <-> cubesats

■ 🔄 〓 | | | | 〓 〓 〓 〓 〓 🖬 🖬 🚺 | | 〓 〓 🖬 🖽 |

10

Summary: Asteroid Impact Deflection Assessment (AIDA)

Thank You!

🚍 📙 🚬 👬 🚍 🏭 🔲 🚍 🚝 🛄 🛄 🔤 🚝 👬 🚍 🚺 🔲 🚍 👫 🔛 🔛

→ THE EUROPEAN SPACE AGENCY

The Hera Milani CubeSat Mission

Planetary Defense Conference

26th April 2021

F. Topputo and the Milani Team

Milani mission concept

- How to provide complementary observations to the Hera planetary defence mission of retrieving information about Didymos asteroids?
- How to support the Hera deep-space Radio science Experiment?
- How to enhance the overall science return of the mission?

TTM

How to enable key mission capabilities of CubeSats for deep space applications?

Obj ID	Objective
SO1	To support the determination of the global properties of Didymos asteroids
SO2	To determine taxonomy and mineral composition of Didymos asteroids
SO3	To detect areas of oxidized silicates
SO4	To characterize the sub-millimeter microstructure of the Didymos bodies surface
SO5	To map the distribution of the fall-back ejecta on Didymos asteroids.
SO6	To compare mature and freshly exposed material at global scale Primary
S07	To characterize the crater caused by DART impact
SO8	To detect the shock-darkening (if any) of the freshly exposed material within the crater
SO9	To support Hera Gravity Field measurements enhanced by ISL network
SO10	To detect inorganic materials, volatiles (e.g. water) and light organics
TO1	To provide ISL communication with Hera
TO2	To provide relative positioning
тоз	To measure the effects of the asteroid environment on key hardware
TO4	To validate autonomous navigation algorithms

ASPECT

- Spectral imager (500 2500 nm)
- 4 channels

Parameter	VIS channel	NIR1 channel	NIR2 channel	SWIR channel
Field of View [deg]	10° x 10°	6.7° x 5.4°	6.7° x 5.4°	5° circular
Spectral range [nm]	500–900	850–1275	1225 –1650	1600–2500
Image size [pixels]	1024 x 1024	640 x 512	640 x 512	1 pixel
Pixel size [µm]	5.5 μm x 5.5 μm	15 μm x 15 μm	15 μm x 15 μm	1 mm
No. spectral bands	Ca. 14	Ca. 14	Ca. 14	Ca. 30
Spectral resolution [nm]	< 20 nm	< 40 nm	< 40 nm	< 40 nm

- Micro-thermogravimeter
- Detects dust particles (<5-10 µm), volatiles (e.g., water) and light organics
- Monitors the molecular contamination (to support other instruments/subsystems)
- Composed of quartz crystals, TCS, Proximity Electronics

Sensor Type	Quartz Crystal Microbalance (QCM)-based device
Resonant Frequency [MHz]	10
Mass [g]	90
Volume [mm]	50×50×38
Sensitive area [cm ²]	1.5
Power [W] (Trange: 233K - 373K)	<1 W (peak, PE+crystals); 0.8 (mean)
Power [W] (Trange: 77K - 373K)	<4 (peak, PE+crystals+heater PE); 3.8 (mean)
Data rate [bit/measurement]	54
Particles size detection range	from 5-10 μm to sub-μm particles
Operational temperature range [K]	from 233 to 350K (PE components)
Crystal working temperature range [K]	from 123 to 473K
Non-operational temperature range [K]	from 77 to 403K
Channels (read-out and controlled)	3 RTDs and 1 frequency; 2 heaters control
Methods/Technique used	1.Dust and contaminants accumulation (passive mode) 2.TGA cycles (active mode)

Milani mission design

Phase	Start		End	
Fliase	Event	Date	Event	Date
LEOP	Launch of Hera mission	Oct 2024	Injection into interplanetary transfer	End of 2024
MTP	Injection into interplanetary transfer	End of 2024	Deployment Initialization Sequence	Mar 2027
ESP	Deployment Initialization Sequence	Mar 2027	Separation	15/03/27
СОР	Separation	15/03/27	FIM (FRP Injection Manoeuvre)	23/04/27
FRP	FIM (FRP Injection Manoeuvre)	23/03/27	CIM (CRP Injection Manoeuvre)	17/04/27
CRP	CIM (CRP Injection Manoeuvre)	17/04/27	EIM (EXP Injection Manoeuvre)	09/05/27
EXP	EIM (EXP Injection Manoeuvre)	09/05/27	Disposal Initiation	01/06/27 (TBC)
DIP	Disposal Initiation	01/06/27 (TBC)	EoL	02/06/27 (TBC)

Milani scientific phases

	Mapping of D1 and D2	Mapping of D2, impact crater (hi-res)	
Resolution Req	≤ 2 m/px (for both D1 and D2)	 ≤ 1 m/px (mapping D2) ≤ 50 cm/px (selected features of D2) 	Enhanced science, technological demonstrations,
Phase Angle Req	 5-25 deg (global coverage of D1, D2) 0-60 deg (surface microstruct. of D1, D2) 	 5-25 deg (global coverage of D2) 0-10 and 30-60 deg (crater imaging) 0-60 deg (surface microstruct. of D1, D2) 	landing attempt

Milani mission profile

Milani CubeSat configuration

System Architecture

- Based on Trestles 6U bus
- Mission Specifics:
 - Payloads: ASPECT + VISTA
 - Navigation Camera
 - LIDAR
 - Propulsion System
 - Inter-Satellite Link (ISL) Radio
 - Umbilical Interface to HERA mothercraft
 - CubeSat IF Board (CIB)
 - External CRS
 - Life Support Interface Board (LSIB)

Milani consortium

JUVENTAS CUBESAT

Ozgur Karatekin¹

eesa

hera

& Juventas team

Stefaan Van wal⁽²⁾, Mehdi Scoubeau⁽²⁾, Etienne le Bras⁽²⁾, Victor Manuel Moreno⁽³⁾, Alain Herique⁽⁴⁾, Paolo Tortora ⁽⁵⁾, Birgit Ritter⁽¹⁾,, Michael Kueppers⁽⁶⁾, Patrick Michel⁽⁷⁾, Ian Carnelli⁽⁶⁾, and Juventas team.

 ⁽¹⁾ Royal Observatory of Belgium, ⁽²⁾GomSpace, ⁽³⁾GMV
 ⁽⁴⁾IPAG, ⁽⁵⁾Università Di Bologna, ⁽⁶⁾ESA, ⁽⁷⁾Observatoire de la Côte d'Azur

Juventas

Juventas is a 6U-XL Cubesat developed as a daughtercraft to the Hera mothership for the purpose of contributing to asteroid research and mitigation assessment objectives of the Hera mission. The Juventas CubeSat will complement the Hera mission, by providing scientific contribution towards the understanding of the formation processes of binary asteroids, their interior structure, surface properties, and dynamical properties:

Juventas

				Country	Company	Role
			1	BE	Royal Observatory of Belgium	PI, landing science / gravimeter
	•			BE	Spacebel	Operations partner (TBD)
				CZ 🛌	Filip Zaplata	LFR digital
Payload:				DK	GomSpace	Spacecraft platform subsystems
5			(Secondary)	FR	Univ. Grenoble / IPAG	LFR design lead (Co-I), Rx chain
	No Hall Con		FR	CNES	Operations partner	
	0		DE	TU-Dresden	LFR Tx chain and antenna simulation	
		CAN MANTER	- Alter	п	U. Bologna	Radio Science (Co-I)
Interior Structure	Gravity Field	Surface Properties	Dynamical Broportion	LU 🚍	GomSpace Luxembourg	Mission and system lead, ISL lead to OHB
L L			Properties	LU 🚍	EmTroniX	LFR electronics
	∧			NL	ISIS	Deployer interface (procurement)
Low-frequency Monostatic Radar	Inter-satellite link radio science	Commission of the local division of the loca	Sun sensors and	PL	Astronika	LFR antenna
10 Electronics Enclosure TX Board		Gyroscopes and	star trackers (surface attitude)	RO	gmv	GNC subsystem
RX Board ADC/DAC Board Power Supply		accelerometers		ES 📃	Emxys	Gravimeter payload
FPGA Board	Gravin	Visible context ca	mera			

See PDC presentations:

Alain Herique JuRa: the Juventas Radar on Hera to fathom Didymoon. Wednesday, 1:15 pm

Paolo Tortora Hera Radio Science Experiments through Ground-Based and Satellite-to-Satellite Doppler Tracking. Wednesday, 1:15 pm.Birgit Ritter Surface Gravimetry on Dimorphos with GRASS on Juventas. *Friday, 7:30 pm.*

Juventas Science Matrix

Science Objective	Investigation	Measurements	Instruments	Mission Phase
SO#1: Gravity field of	Gravity field characterisation outside Brillouin sphere at least up to degree & order 2	Deflection during orbit measured with ranging, LoS to HERA (second CubeSat)	ISL radio link	Proximity operations
Dimorphos	Surface gravity	Surface acceleration	Gravimeter	Surface operations
	CubeSat descent / touchdown/bouncing	Dynamic recording of each event	GNC	Landing / Bouncing
SO#2: Internal structure of Dimorphos	Reconstruction of material density & largest monolithic object	Properties of (back-)reflection of transmitted signal	Low frequency radar	Proximity operations
SO#3: Surface properties of	Visible imaging	Inspection of Didymoon surface features and impact crater	Visible camera	Proximity operations, Surface operations
Dimorphos	Surface strength measurement	Rebounds from the surface		Landing / Bouncing
SO#4 (secondary) Dynamical properties of Dimorphos	Orbital analysis	Orbital analysis by ranging LoS to HERA (second CubeSat)	ISL radio link	Proximity operations
	Variable surface acceleration	Surface acceleration measurements over >1 orbit	Gravimeter	Surface operations
	Attitude and Time dependent surface illumination	Attitude and time dependent surface illumination	Star tracker, sun sensors	Surface operations
SO#5 (secondary) Surface/sub-Surface properties of Didymos	Reconstruction of material density & largest monolithic object	Properties of (back-)reflection of transmitted signal	Low frequency radar	Proximity operations

Juventas Mission Profile

Launch and Cruise

Juventas is transported to Didymos by Hera, stowed within a deployment canister. It is released at Didymos and undergoes a short commissioning period

Proximity Operations

Radar & Radio Science Observations

Juventas performs the main scientific observations with its low frequency radar payload to look inside the asteroid interior, and operate radio science experiments through the ISL link

Surface Operations

Surface Mechanical Properties & Gravity

Juventas attempts to land on the surface of Didymoon, making measurements of the impact and bouncing events and then operating its gravimeter payload from the surface to understand dynamical properties of the asteroid system

Mission Timeline

 Scenario
 LPO
 Arrival
 Cruise Duration

 Baseline 2024
 Oct 8, 2024
 Oct 25, 2024
 Dec 28, 2026
 2.17 – 2.22 years

6

Proximity Operations

Surface touchdown & bounces

Science Objective	Investigation	Measurements	Instruments	Mission Phase
Surface Mechanical Properties	Surface strength measurement	Rebounds from the surface	IMU, ISL	Bouncing
Local (High degree) Gravity	CubeSat descent / touchdown/bouncing	Trajectory (Radio tracking, LR), dynamic recording of events	GNC, ISL	Descent / Bouncing

Surface Operations

- Gravimeter starts to operate after soft-landing of Juventas on the surface
- Gravimeter measurements at equally spaced measurements over a Didymoon orbit (every 30 degrees) to get dynamic variations
- Goal: survivability of 1 day = approx. 2 Didymoon orbits
- ISL link
- Surface attitude sensors
 - Star trackers, sun sensors
 - Navigation and context camera images from surface (TBC)

OBJECTIVES MAPPED TO HERA REQUIREMENTS

Hera ID	Hera Mission Requirement Description	Juventas Objective	Juventas Instrument/Measurement		
Core Requi	rements for Planetary Deflection				
10	Determine the mass of Dimorphes	501	ISL radio science		
		301	Gravimeter		
			LFR radar: density/porosity		
D2	Global properties of Dimorphos (size, global shape, volume,	501 502	Accelerometers: porosity		
02	density, porosity)	501, 502	Gravimeter: surface gravity/density		
			ISL radio science: gravity		
D3	Size distribution of surface material	503	LFR radar		
			Visible imaging (with navcam)		
	Dynamical properties of the Didymos system		Gravimeter: Surface accelerations over a Didymoon orbit		
D4		SO4	Attitude: landed attitude over Didymoon orbit using star trackers		
			or sun sensors		
			ISL radio science (via orbital analysis, TBC)		
If DART is s	successful:				
D5	Shape and volume of the DART impact crater	SO3	Visible imaging (with navcam)		
D6	Size distribution of excavated material	N/A	LFR radar (TBC)		
Opportuni	ty for Planetary Defence				
D7	Surface strength	SO3	Accelerometers: Surface strength from impact		
D8	Interior structure of Dimorphos	SO2	LFR radar		
9	Composition of Dimorphos	503	LFR radar		
		303	Accelerometers: Surface strength from impact		
If DART is successful:					
D10	Transport of impact ejecta from Dimorphos to Didymos	N/A			

Alain Herique JuRa: the Juventas Radar on Hera to fathom Didymoon. Wednesday, 1:15 pm
 Paolo Tortora Hera Radio Science Experiments through Ground-Based and Satellite-to-Satellite Doppler Tracking. Wednesday, 1:15 pm.

Birgit Ritter Surface Gravimetry on Dimorphos with GRASS on Juventas. Friday, 7:30 pm.

JUUR

7th IAA Planetary Defense Conference 26-30 April 2021, Online Event

Hosted by UNOOSA in collaboration with ESA

7th IAA Planetary Defense Conference 26-30 April 2021, Online Event

Hosted by UNOOSA in collaboration with ESA

Break Up next: Session 2 – Hayabusa2

