7th IAA Planetary Defense Conference 26-30 April 2021, Online Event

Hosted by UNOOSA in collaboration with ESA

Session 13: Apophis and Others, Far and Near: Future Characterization Opportunities from NEO Close Approaches Chairs: Gerbs Bauer | Larry Denneau | Michaela Blain

Presenters: M. Granvik | M. Kelley | D. Tholen | J. Prado | P. Taylor | V. Zubko

Frequency of Close Earth Approaches by Near-Earth Objects

Mikael Granvik

Luleå University of Technology, Sweden University of Helsinki, Finland

Building on

Granvik, Morbidelli, Jedicke, Bolin, Bottke, Beshore, Vokrouhlicky, Nesvorny, Michel, 2018. "Debiased orbit and absolute-magnitude distributions for near-Earth objects", Icarus 312, 181–207.

Predicted rate of impacts on the inner planets and comparison with bolides

Granvik+ (2018)

What is the frequency of encounters such as that by Apophis in 2029?

- Apophis has H≈19.1 and closest geocentric distance in 2029 is 0.00025 au.
- Frequency of Apophis-like encounters is once per 1000 yr according to casual statements – unclear where this number comes from.
- Frequency of Apophis-like encounters is once per 6500 yr according to Granvik+ (2018).

Can we rely on the Granvik+ (2018) prediction in terms of impact and close-encounter rates?

- The impact frequency in the size range of observed bolides appears to be in reasonable agreement with model prediction.
- A direct verification of the impact frequency for larger objects is, of course, impossible because impacts are rare and there is no observational data.
- We can make a direct comparison between the predicted and observed rate of close encounters, but need to use a reasonably unbiased sample to avoid being misled by observational biases.

ntroduction Tutorial Data Table Comets (pre-1900)

Close Approach Data

The following table shows close approaches to the Earth by near-Earth objects (NECs) limited as selected in the "Table Settings" below. Data are not available prior to 1900 A.D. nor after 2200 A.D. Data are further limited to encounters with reasonably low uncertainty.

				U	leck out our brief	video tutorial.					
	Table Settings:		Near future (within 60 days)		Nominal dist. <=	0.05au •	no H limit			•	
Show	10 • entries ving 1 to 10 of 31 entri	ies						1	Search:	Search	object
	Object		Close-Approach (CA) Date	*	CA Distance Nominal (LD au)	CA Distance Minimum (LD au)	V relative (km/s)	V infinity (km/s)	(m	H ag)	Diameter
	(2016 QE45) of		2021-Apr-24 01:48 ± < 00:01		13.20 0.03391	13.20 0.03391	15.26	15.3	25	21.7	120 m - 270 m
	(2021 HG1) of		2021-Apr-24 08:31 ± < 00:01		6.38 0.01639	6.36 0.01634	10.31	10.3	29	27.0	10 m - 23 m
	(2021 FK3) cr		2021-Apr-24 17:45 ± < 00:01		15.73 0.04041	15.70 0.04035	14.05	14.0	04	22.4	89 m - 200 m

Close encounter data 2021-04-15 ± 1yr from CNEOS

Past year ("observed") Next year ("predicted")

Unbiased close encounter data 2021-04-15 ± 1yr

Model prediction for frequency of close encounters by large NEOs

Predicted frequency of close encounters is factor of few higher than observed frequency

Completeness of the 17<H<18 NEO inventory in 2018

Conclusions

- The observed frequency of close encounters for Apophis-scale objects is a factor of a few lower than the model predicts.
- The Apophis encounter in 2029 thus appears to be a once-in-20,000-yr event.
- The root cause for the disagreement between theory and observations is still not understood, but observational biases may be part of the explanation, in particular for smaller NEOs.

International Asteroid Warning Network (IAWN) Apophis Campaign

Credits: NASA/JPL-Caltech and NSF/AUI/GBO

NASA PDCO Lead: Mike Kelley, NASA HQ IAWN Coordinator: Prof. Vishnu Reddy (University of Arizona) Group Leads: Davide Farnocchia (JPL), Jessie Dotson (NASA ARC), Nicolas Erasmus (SAAO), David Polishook (WIS), Lance Benner (JPL), Joe Masiero (IPAC, CalTech), James (Gerbs) Bauer (UMD)

Planetary Defense Campaigns

- NASA PDCO has been conducting planetary defense tabletop exercises for several years in coordination with other federal agencies
- Planetary defense community also engaged in such activities through the Planetary Defense Conference Hypothetical Asteroid Impact Scenarios
- Those theoretical exercises do not include real world observational component with actual NEOs
- Proposal was made during the 2017 NEOO program review to use the October 2017 flyby of a small NEO, 2012 TC4, to exercise the entire global planetary defense system from observations to modeling to communication
- Since then, we have conducted two additional campaigns

Campaign Structure

- Participation is voluntary ("Coalition of the Willing")
- Participants organize themselves into working groups with a lead
- <u>Working Groups</u>: Astrometry, Photometry, Spectroscopy, Radar, Direct Imaging, Spacecraft Missions, Impact Risk Modeling
- Bimonthly telecons with updates from working groups
- Impact risk model is run at different epochs as information about the target is gathered by the observers
- Data quality/reduction timelines are set by operational rather than scientific needs

Probabilistic Asteroid Impact Risk (PAIR) in Apophis Exercise

Probabilistic Asteroid Impact Risk (PAIR) Model

PHA Measurements

- H-magnitude
- Albedo
- Orbital trajectory
- Asteroid class
- Composition

Impact Parameters

- Diameter
- Density
- Strength
- Luminous efficiency
- Velocity
- Entry angle
- Azimuth angle
- Impact coordinates

Tsunami (gridded pop. affected within inundated areas)

Global Effects (% world pop.

affected by climatic effects)

Apophis Campaign (Oct. 2020-April 2021)

- <u>Goal:</u> Near-Earth asteroid Apophis will make a flyby on the Earth on March 06, 2021 at a distance of 10 million miles. The goal of Apophis Observing Campaign is to discover, track, and characterize Apophis as a potential impactor in order to exercise the Planetary Defense system from observations to impact modeling and prediction, and communication. This campaign is open for participation by amateur astronomers from around the world.
- Participants: 40 observers/modelers from 14 different countries
- <u>Working Groups</u>: Astrometry (Davide Farnocchia); Hazard Modeling (Jessie Dotson); Photometry (Nic Erasmus); Spectroscopy (David Polishook); Radar (Lance Benner); Spacecraft (Joe Masiero)

Timeline

- Apophis was 'discovered' by CSS Schmidt after NEOWISE triggered the discovery process in Dec. 2020 when it was put on NEOCP.
- Impact probability was calculated with the real Apophis as follow up observations were made. As uncertainties and impact probability decreased, we switched to hypothetical impactor for the reminder of the exercise.
- <u>Epoch 1</u>: Using diameter and albedo from NEOWISE observations we ran the impact risk model on Dec. 23, 2020
- NASA IRTF spectral observations helped constrain the taxonomy and identify the meteorite analog (L chondrite). This helped constrain the density for a range of assumed porosities. Photometric observations helped refine the H magnitude.
- <u>Epoch 2</u>: Included NASA IRTF observations for taxonomy and meteorite analog and ran the model on Jan. 22, 2021.
- Epoch 3: Included radar observations for diameter and ran the model in late March 2021.

Impact Risk Summary

(Epoch 1: Initial Observations with NEOWISE, 0.6% Impact Prob)

Characterization Summary & Updates

- Assessment date: 23 Dec. 2020
- Earth impact probability: 0.6%
- Size refinement from NEOWISE data
- Diameter 300m ± 75m
- Albedo: 0.44 ± 0.19
- Energy: mean 678 Mt, full range 2 8220 Mt
- Entry: 12.2-12.8 km/s, at entry angles up to 54°

Hazard Summary

- Affected population: 0-61M, 12k average total risk with 0.6% impact prob., 2M average among impacting cases.
- No population damage for ~9% of impact cases.
- Blast overpressure is primary hazard for ~90% of impact cases.
- Local blast damage radii: 0-370 km, 150 km avg.
- Potential tsunami damage for ~4% of impact cases (primary hazard for <2%)
- No major global effects expected

Hypothetical exercise

Potential Risk Regions

Affected Population Risk Probabilities

NASA IRTF and Photometric Observations

Impact Risk Summary

(Epoch 2: NEOWISE & taxonomy, 6% impact probability)

Characterization Summary & Updates

- Assessment date: 22 Jan. 2021
- Earth impact probability: 6%
- Taxonomy: Sq determination from IRTF
- Size: NEOWISE size refinement from Dec. 23
- Diameter 300 m ± 75 m, full range 44 550 m
- Energy: mean 670 Mt, full range 2 3770 Mt
- Entry: 12.2-12.8 km/s, at entry angles up to 50°

Hazard Summary

- Affected population: 0-54M, 138k average total risk with 6% impact prob., 2.3M average among impacting cases.
- No population damage for ~9% of impact cases.
- Blast overpressure is primary hazard for ~90% of impact cases.
- Local blast damage radii: 0-370 km, 150 km avg.
- Potential tsunami damage for ~2% of impact cases (primary hazard for <0.4%)
- No major global effects expected

Hypothetical exercise

Potential Risk Regions

Affected Population Risk Probabilities

Goldstone Apophis Radar Observations in 2021

Quick Overview: 12 tracks: March 3 - 14. Track durations: 1.25 – 8.5 hours Some tracks will use Green Bank to receive (doubles the SNRs). Goldstone > Green Bank SNRs comparable to those at Goldstone in 2013.

Impacting clone Data cutoff Mar 1 Pre-Radar

Impacting clone Data cutoff Mar. 15 With Radar data

Impact probability for April 2029

As of March 15, 2021:

Real Apophis: 0%

Impacting clone: 100%

Local Damage Swath

(Epoch 3: Radar size data, 100% virtual impact probability)

Serious Severe Critical Unsurvivable

Damage swath: Full range of regions potentially at risk to local ground damage, from all modeled cases (including unlikely worstcase objects and all sampled impact locations).

Sample average damage areas: Average blast damage areas at several high-population locations across the swath.

Map image/data credit: Google Earth, © 2020 Google. Data SIO, NOAA, U.S. Navy, NGA, GEBCO. Image Landsat / Copernicus. © 2020 GeoBasis-DE/BKG. Swath extent: ~5800 km long, from UK to Iran, ~650–470 km wide (~650 W. end, 580 km middle, ~470 km E. end)

Hazard Sources

(Epoch 3: Radar size data, 100% virtual impact probability)

- Total affected population risk is driven primarily by local blast overpressure damage
- Blast damage occurs for all cases and is primary hazard source for ~98% of cases
- Thermal damage also occurs in 98% of cases but is smaller or less severe than the blast damage in nearly all cases (primary hazard source for only 2% of cases).
- Tsunami inundation potentially occurs for ~1% of cases, but is not primary hazard source in any cases (tsunami minor enough and blast always close enough to coast to cause more damage)
- No major global climatic effects are expected
- Only one out of 25M cases caused no population damage

Affected Population Ranges Along Swath

(Epoch 3: Radar size data, 100% virtual impact probability)

- Apophis no longer on the risk list as 2068 impact has been ruled out. No threats from Apophis in the next 100 years.
- IAWN campaigns have been very effective in identifying strengths and stress points of global planetary defense coordination efforts.
- Participants from this and previous campaigns are pleased with the process and results and express enthusiasm for participating again in future campaigns.

Detection of Yarkovsky Acceleration of (99942) Apophis

David J. Tholen University of Hawaii

Davide Farnocchia Jet Propulsion Laboratory

Update to DPS and Apophis T-9 Presentations

- Reflects the status of the project as of PDC abstract submission deadline
- Five additional Subaru observations in 2020 December good to 10 milliarcsec
- As of that time, our value for A2 was $-30 \pm 3 \times 10^{-15} \text{ AU/d}^2$, or slightly more negative than previous determination
- Shifted the peak of the probability distribution a little farther away from the 2068 keyhole (2029 B-plane distance of 47355 ± 36 km)

Keyhole Map for 2029 Close Approach

Impact Probabilities Over Next Century

- 10 million clone orbits were checked for Earth impacts over the next century and 13 impacts were found
- 8 of those impacts occurred on 2068 Apr 12.63 for an impact probability of slightly less than 1 in a million in 2068
- Single impacts were also found on 2075 Apr 13.21, 2079 Apr 13.65, 2079 Oct 16.81, 2083 Apr 13.31, and 2091 Apr 13.37
- More recent observations have eliminated the impact risk over the next century

Acknowledgments

- Several people have helped to acquire observations of Apophis from Mauna Kea Observatory over the years, including Fabrizio Bernardi, Marco Micheli, Garrett Elliott, Dora Fohring, and Denise Hung.
- Most recent funding from NASA grant NNX13AI64G.

Dedication

 DJT would like to dedicate this presentation to the memory of Apophis co-discoverer and dear friend Roy A. Tucker, who passed away of pancreatic cancer on 2021 March 5, within hours of the 2021 close approach of Apophis to the Earth

APOPHIS Express

A UNIQUE OPPORTUNITY FOR VISITING APOPHIS IN 2029

Jean-Yves Prado¹, Daniel Hestroffer², Alain Herique³

¹PLATINEO Suite C201 14 rue Henri Amel 17000 La Rochelle France prado@club-internet.fr
 ²IMCCE Paris Observatory, univ. PSL, CNRS hestro @imcce.fr
 ³ Univ. Grenoble Alpes, CNRS, CNES, IPAG, Grenoble, France Alain.Herique@univ-grenoble-alpes.fr

APOPHIS Express Outline

- . Interception and rendez-vous with APOPHIS on its incoming leg, a few days before its flyby
- . Launch in March 2029 on a highly eccentric orbit with an apogee between 1 and 2 Million kilometers

- . Delivery of a set of modules for
 - rendez-vous with APOPHIS (Apogee Kick Module)
 - close navigation, observation and command of the other modules (Service Module)
 - APOPHIS orbiter
 - lander
 - Return Capsule
- . Main mission advantages:
 - short duration
 - late departure
 - system requirements similar to Sun-Earth L1/L2 missions instead of interplanetary missions

Standard Mission Scenario

- Arrival on APOPHIS in February 2029 (V_{inf}<1.6 km/s)
- Total $\Delta V < 5.2$ km/s
- 2 months for precursor activities before the close pass

Proposed Scenario

- Separation of the AKM after $\Delta V@apogee$ В
- Approach SM+OM+AL+RC С
- OM separation D
- AL (+RC) separation Ε
- Mission end F

APOPHIS trajectory

Launch Options (based on publically available data)

Launcher	Delivery capacity	Gross mass	Estimated allocation (2)			
	@ 1 Mkm	after AKM separation	for instrumentation			
Soyuz-Fregat	2000kg	296kg	56kg			
AR 62	2500	320	60			
AR5 ECA	6200	920	174			
AR64	7500	1060	201			
AR64-VINCI (1)	7500	1370	260			

All masses in kg

(1) AKM Specific Impulse 435s except for AR64-VINCI (465s)
(2) Based on HERA mass budget (19% of the total mass available for the scientific P/L ref https://www.cosmos.esa.int/documents/336356/1601091/SMPAG_HERA_Carnelli.pdf/f8d427cf-5ec7-95c0-1265-3fe95f89d880

Conclusions

The short duration and short distance of the systems have positive effects on operation costs

Late launch has positive impact on the decision making process

It can benefit from other space missions and ground observations

Large public interest expected due to the fast sequence of events in the last 2 days before the flyby

Scientific objectives, payload and modules to be defined in coherence with the expected other missions (SMPAG?) and in adequation with the selected launcher

EXTENSION OF THE EARTH LIBRATION POINT MISSIONS BY TARGETING A SPACECRAFT TO NEAR-EARTH ASTEROIDS

N.A. Eismont¹, <u>M.V. Pupkov</u>^{1,2}, K.S. Fedyaev¹, V.A. Zubko^{1,2}, A.A. Belyaev^{1,2}, N.A. Simbiryov^{1,2}, R.R. Nazirov¹

¹ Space Research Institute of Russian Academy of Sciences
 ² Bauman Moscow State Technical University

IAA PLANETARY DEFENSE CONFERENCE 2021

ISEE-3/ICE Project¹

An Approach to Estimate the Mass of an Asteroid²

¹ David W. Dunham, Robert W. Farquhar et al. "The 2014 Earth return of the ISEE-3/ICE spacecraft." Acta Astronautica. Vol. 110, 2015, pp. 29–42. ² A. Perret. "Mass Determination of a Small Body in Solar System by Using a Test-Mass During a Fly-By." Acta Astronautica. Vol. 12, No. 1, 1985, pp. 41-44.

IAA PLANETARY DEFENSE CONFERENCE 2021

Spectrum-Roentgen-Gamma³

Launch: July 13, 2019 Wet mass: 2712.25 kg Payload mass: 1210 kg Exp. lifetime: 6.5 years

³ Spectrum-Roentgen-Gamma, Astrophysical project. URL: http://srg.iki.rssi.ru/

IAA PLANETARY DEFENSE CONFERENCE 2021

SRG Trajectory Simulating⁴

⁴ Aksenov S.A., Bober S.A. "Calculation and Study of Limited Orbits around the L2 Libration Point of the Sun–Earth System." Cosmic Research, 2018, Vol. 56, Iss. 2, pp. 144–150.

IAA PLANETARY DEFENSE CONFERENCE 2021 APRIL 26-30, 2021

General Mission Analysis Tool⁵

⁵ GMAT: General Mission Analysis Tool. URL: https://sourceforge.net/projects/gmat

IAA PLANETARY DEFENSE CONFERENCE 2021

Asteroids Comets (35396) 1997 XF11 289P/Blanpain 300P/Catalina (99942) Apophis Ephemeris data – from NASA Horizons interface⁶ Jet Propulsion Laboratory + View the NASA Portal California Institute of Technology + Center for Near-Earth Object Studies JPL HOME TECHNOLOGY EARTH SOLAR SYSTEM STARS & GALAXIES Solar System **Dynamics** PHYSICAL DATA SCOVER HORIZONS Web-Interface

⁶ WebGeocalc: A Tool of the Navigation and Ancillary Information Facility. URL: https://ssd.jpl.nasa.gov/horizons.cgi

IAA PLANETARY DEFENSE CONFERENCE 2021

Asteroid (35396) 1997 XF11

IAA PLANETARY DEFENSE CONFERENCE 2021

Asteroid (99942) Apophis

Dependence of the minimal ΔV required for the SRG transfer to Apophis on the date of the impulse application (shown in red), and the relative velocity of the spacecraft (shown in blue)

Observing Apophis from the SRG initial orbit

IAA PLANETARY DEFENSE CONFERENCE 2021 APRIL 26-30, 2021

Comets 289P/Blanpain and 300P/Catalina

Dependence of the minimal ΔV required for the SRG transfer to 289P/Blanpain on the date of the impulse application (shown in blue), and the relative velocity of the spacecraft (shown in orange) Dependence of the minimal ΔV required for the SRG transfer to 300P/Catalina on the date of the impulse application (shown in red), and the relative velocity of the spacecraft (shown in green)

IAA PLANETARY DEFENSE CONFERENCE 2021 APRIL 26-30, 2021

Thank you for attention!

IAA PLANETARY DEFENSE CONFERENCE 2021

7th IAA Planetary Defense Conference 26-30 April 2021, Online Event

Hosted by UNOOSA in collaboration with ESA

Q&A

Session 13 – Apophis and Others, Far and Near: Future Characterization Opportunities from NEO Close Approaches

7th IAA Planetary Defense Conference 26-30 April 2021, Online Event

Hosted by UNOOSA in collaboration with ESA

Break

Up next: PANEL - PROPOSAL FOR AN INTERNATIONAL YEAR OF PLANETARY DEFENSE

