

3rd ICAO / UNOOSA Aerospace Symposium

Vienna (Austria) - August, 29th to 31th 2017

SpacePlane (in short)

Environment topics

Noise

 \rangle Emissions \rangle

Space environment

Conclusion

Solid propulsion technology should be avoided for noise considerations

Introduction

SpacePlane (in short)

Environment topics

Noise »

Emissions

Space Conclusion

A suborbital flight (local) requires a few metric tons of fuel

SpacePlane (in short)

Environment topics

Noise

 \rangle Emissions \rangle

Space environment

Conclusion)

Suborbital flights are far much shorter in time and lower altitude

Flight path of SpacePlane

Area for flight operations is as small as 100 × 100 km

SpacePlane (in short)

Environment topics

Noise

Emissions

Space environment

Conclusion

Twin turbofans for aeronautic phases

State-of-the-art civil technology

For a ride to space, SpacePlane burns ca. 9500 liters of jet fuel (translating equivalent LNG energy).

It is as the same as a flight from Paris to Vienna and a Legacy Regional Jet 1

Rocket propulsion used only for acceleration to 100 km

- Liquid technology (vs. solid)
- Fuel: Liquefied Natural Gas (LNG) 30% more efficient than standard jet fuel
- Oxidizer : Liquefied Oxygen (LOX)

¹ According to computation derived from French government décret n° 2011-1336 dated October, 24th 2011

SpacePlane propulsion is optimized for minimizing fuel consumption

AIRBUSDEFENCE & SPACE

Environment impact during flight operations of SpacePlane

Noise and propulsion

Sonic bang sourced noise

Emissions and propulsion

Space weather (electromagnetic field)

Space debris

Noise and propulsion

During space phases, rocket propulsion is ON for ca. 2 minutes only (orange line): in between 33000 ft and 60 km altitude (Not used at take-off)

Noise generated by liquid rocket propulsion is "close" to large size turbofan

During aeronautic phases (green line) SpacePlane is powered with standard turbofans (civil state-of-the-art technology)

Aeronautic regulations apply. EASA CS-36 standard e.g.

.....SpacePlane & environmentally sustainable flight operations.....

Sonic bang sourced noise

SpacePlane supersonic travels at speeds during some space phases (in between red dots): few minutes in total

According to up & down directions of "sonic" flight (close to vertical), sonic bang foot print does not exceed a circle of ca. tens radius decreasing with altitude and escalating vacuum conditions

Emissions emanating from propulsion

During aeronautic phases, SpacePlane powered with turbofans

Aeronautic regulations apply. EASA CS-34 standard e.g.

- Liquid technology
- Fuel: Liquefied Natural Gas (LNG) 30% more efficient than standard jet fuel

LNG (or Methane) is the lowest Carbon species Hydrocarbon: 1 for Methane (CH_4) vs. 10 for Kerosene ($C_{10}H_{22}$) generating much lower CO_2 when burning with Liquid Oxygen ¹

SpacePlane rocket engine uses bio-LNG which was successfully tested (full scale engine) in 2016

¹ Methane is known to have a strong green house effect when in gaseous state (and not liquefied)

.....SpacePlane & environmentally sustainable flight operations.....

Space weather

Space leg of the mission (in between two red dots)

- Altitude: between 30.000 ft and 100 km
- 10 minutes duration (1)

As long as location for flight ops (ca. $100 \times 100 \text{ km}$ area) remains below these latitudes, managing impact of space weather is as the same as civil aeronautics

Space debris

At maximum altitude of SpacePlane (100 km), space debris "naturally" falling down to ground

According to altitude range and (10 minutes for Space phases), likelihood of interaction with Paris-New York flight

SpacePlane is a kind of legacy Regional Jet in terms of environment impact

Noise & emissions from turbofans matching **EASA CS-34 & CS-36**

Noise from rocket engine not an issue (not used at take-off e.g.)

Effect of emissions from rocket engine (bio Liquefied Natural Gas) to be further investigated

SpacePlane is a kind of legacy Regional Jet in terms of environment impact

Effect of sonic bang close to zero on ground

Impact of space environment (weather & debris) to SpacePlane is as the same as a legacy cruiser aircraft crossing Atlantic ocean

SpacePlane designed for environmentally sustainable flight operations

