ICIMOD

Use of Earth Observation and Allied Tools – Operational Challenges, and Lesson Learned from 2015 Nepal Earthquake

Deo Raj Gurung, Sudan Bikash Maharjan, Govinda Joshi, Rajan Bajracharya, and MSR Murthy

International Centre for Integrated Mountain Development

Kathmandu, Nepal

The Use of Earth Observation Data in Disaster Management and Risk Reduction: Sharing the Asian Experience

Hyderabad, 8-10 March 2016

ICIMOD: International Centre for Integrated Mountain Development

ICIMOD

Nepal Earthquake 2015

ICIMOD

FOR MOUNTAINS AND PEOPLE

Post Disaster Needs Assessment

- ~ 9000 lives lost;
- ~ 22000 people injured

~ US\$ 7 billion in loss/damage

GOVERNMENT OF NEPAL NATIONAL PLANNING COMMISSION KATHMANDU 2015

Managing expectation – a critical ICIMOD challenge

FOR MOUNTAINS AND PEOPLE

Data provider /technician

Incomplete communication resulted in over expectation.

Miss-directed priorities

ICIMOD

FOR MOUNTAINS AND PEOPLE

The nomenclature of the event (earthquake) was partly responsible for missdirected priorities.

Thus both ways communication between suppliers and users is critical for coordination.

PDNA, 2015

Satellite data – availability Vs. accessibility

ICIMOD

FOR MOUNTAINS AND PEOPLE

Accessibility and not availability of satellite data was a biggest challenge during Nepal Earthquake.

About 1.5 TB data accessed by ICIMOD team immediately after the Nepal Earthquake.

In case of Haiti Earthquake, USGS provided 54 TB of data (Duda and Jones, 2011).

Data transfer – a challenge

ICIMOD

Data management system

ICIMOD

FOR MOUNTAINS AND PEOPLE

Mosaic raster file ensured mapping of all the satellite data within a single frame, easing mapping for gap identification and location based searching.

Mosaic Raster datasets in geo-database

Rapid mapping support

FOR MOUNTAINS AND PEOPLE

Settlement cluster mapping

Mapping of helipad sites

Polling station database

ICIMOD

Damage survey – Remote sensing based (satellite data)

ICIMOD

FOR MOUNTAINS AND PEOPLE

Image of Barpak - epicenter

• Distortion;

Damage survey – Remote sensing based (satellite data)

FOR MOUNTAINS AND PEOPLE

 Accuracy of EO for damage assessment is influenced by factors such as sensor type, ground sample distance, off-nadir angle, and spectral resolution that (Boccardo and Tonolo, 2012)

 Accuracy of remotely sensed damage assessment is reported to vary from 60% to 70% (Corbane et al, 2011; Ajmar et al, 2011)

Damage survey – Remote sensing based (UAV)

ICIMOD

Damage proxy map

FOR MOUNTAINS AND PEOPLE

- Over estimates;
- Base line database building footprint was not readily available.

Damage Proxy Map (DPM) generated using synthetic aperture radar (SAR) interferometric by NASA and Caltech scientists.

Field based survey - Rapid assessment

Landslide mapping

FOR MOUNTAINS AND PEOPLE

One of the sort after data layers in post Nepal EQ was of landslide

1422 landslide, Sindhupalchowk district (Source: ISRO)

Many parallel landslide inventories:

NASA, USGS, BGS, ISRO, IIT, ICIMOD, CAS, JAXA

Rapid landslide mapping

FOR MOUNTAINS AND PEOPLE

Result:

- Inconsistent landslide database (point and polygon)
- Landslide figures ranging from 3000 10000

Reason:

- Lack of uniform expertise volunteers
- Lack of mapping guideline
- Mapping in silos lack of coordination

Dissemination challenges

FOR MOUNTAINS AND PEOPLE

- Lack of systematic dissemination protocol/SoPs
- Lack of single gateway for share, discover and access data layers
- Lack of feed-back mechanism

http://www.icimod.org/nepalearthquake2015

Nepal Earthquake 2015: Disaster Relief and Recovery Information Platform

ICIMOD

FOR MOUNTAINS AND PEOPLE

http://drrportal.gov.np/

Nepal Earthquake 2015

- One uniform system for data assimilation
- Knit data/information from different sources/teams to paint a larger picture
- Help data discover, share, and use.

Crowd sourcing – how good is open ended system

ICIMOD

FOR MOUNTAINS AND PEOPLE

http://admin.tomnod.com/campaign/nepal_earthquake_2015/results

Conclusion

- Data sharing and two way information flow (demand & supply) is essential to generate actionable information, share and use
- Need for stronger role from Govt. agency to anchor coordination amongst multi-sectoral agencies should translate to information gathering and dissemination domain
- SOPs, guideline & mechanisms should be established, awareness build & familiarized well ahead of the event on mapping, access, dissemination, & should include feedback gathering.

