

Real-time Disaster Response using Positioning Information and Quasi-Zenith Satellite System

Sep. 5th 2011

Tetsuya KUSUDA Senior Manager NTT DATA CORPORATION

Introduction of the Project Experiment in March 2011 Planned experiment in November 2011 Conclusions

Introduction of the Project

Red Rescue Project

Red Rescue Project is a 3-year research project funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) since 2009.

"REal-time Disaster REsponse using Small-Capacity data from the

UniversE."
"REal-time Disaster RESponse using Q7SS"

We aim to utilize small-capacity data from satellites for FAM using Satellite Based Augmentation System (SBAS) function.

FAM: Flexible Action Management

Project Member Structure

Project Timeline

Conceptual Chart (1)

Key innovation

- → Utilize satellite technology and location information
- →Improve decision-making at disaster time

Conceptual Chart (2)

on highways.

or rich-contents

situation.

Red Rescue System Configuration

Red Rescue Project Architecture

(X: Utilization of Satellite Technologies)

Experiment in March 2011

Experiment Layout

Experiment Structure (@Yokohama PORTA)

IMES Transmitter (Battery-powered)

Location Information

Action Menu is displayed by the Selective Reception AP using Emergency L1-SAIF Data and Location Information.

Selective Reception Application on Android Smartphone (via Receiver + Windows Mobile PDA)

Receive & Show information

Show action Menu

Launch 3D Contents Application for evacuation

Emergency L1-SAIF Data

Wireless LAN access point (Battery-powered)

Emergency L1-SAIF data transmit simulator

Experiment Scenario

Experimental flow

Receive disaster information (broadcast)

Receive evacuation direction (by location)

Select action from action menu (Show evac. Route)

Evac. route from current location to exit is displayed

Move to exit

Exit

Planned experiment in Nov.2011

Outline

Experiment Structure

QZS

IMES Transmitter (Battery-powered)

Location Information

Selective Reception Application on Android Smartphone (via Receiver + Windows Mobile PDA)

Receive & Show information

Show action Menu

Launch Application for evacuation

Emergency L1-SAIF Data

QZS

Conclusions

Conclusions

- We launched Red Rescue Project and researched user needs of FAM and system requirements by system design management methods.
- We could demonstrate the feasibility of utilizing small-capacity data for FAM on real-time disaster response.
 - Information are useless if you only have them.
 - Use them for controlling something.
 - We can utilize a small data as a trigger for flexible actions.
- The next step is to combine user requirements with the solutions on QZSS environment.

Thank you for your attention.

Global IT Innovator

NTT DATA GROUP

