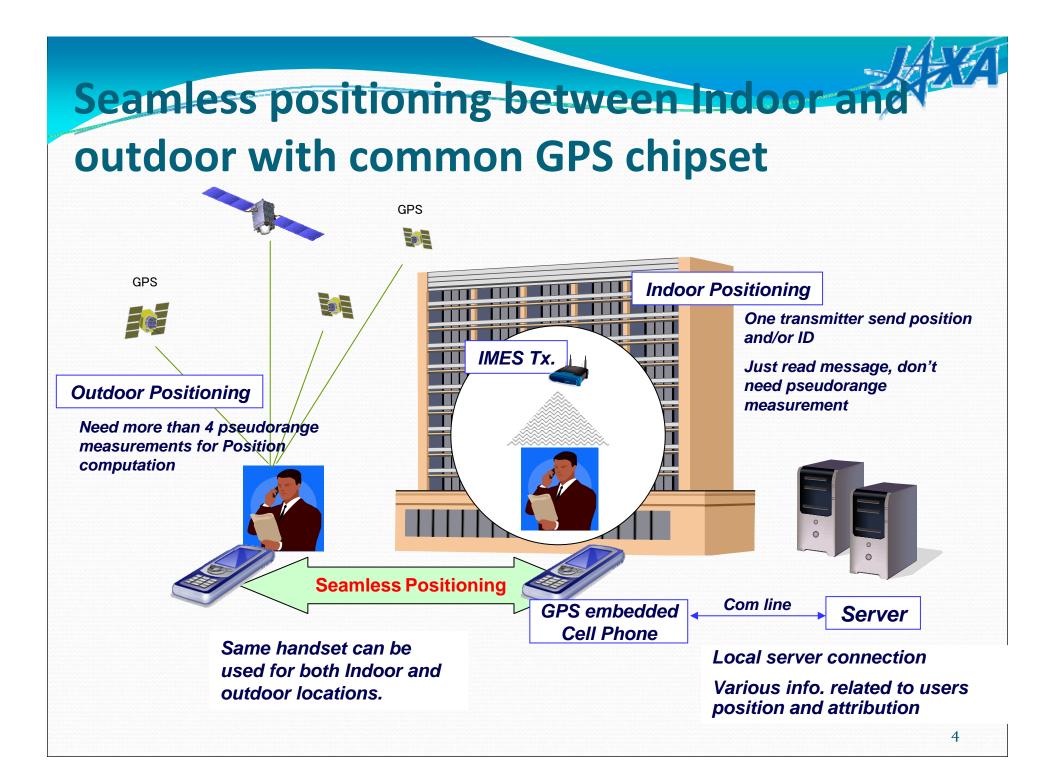
One solution for a seamless positioning, IMES concept and compatibility with GNSS signals

Satoshi Kogure, Yoshihisa Kawaguchi Japan Aerospace Exploration Agency Kiyoshi Yajima Lighthouse Technology and Consulting Co., Ltd.

7 September, 2011 ICG-6 WG-B @Mitakaigisho, Tokyo


Are you looking for a solution for the seamless positioning?

- How many hours do you spend indoor during your daily life?
 - <u>Most people spend their life much longer time indoor</u>
 <u>than outdoor</u>
- Growing smart phone and LBS market require seamless positioning
 - at any condition
 - at any location
 - at any time

Indoor MEssaging System (IMES) is a powerful solution for realization of seamless positioning.

Concept of IMES

- IMES can transmit its position in three dimensions and/or ID directly
 - No pseudorange measurement and time synchronization.
- Moderate accuracy (10-20m), but stable even in deep indoor.
 - Signal reception area equals to position accuracy.
- Signal is still compatible and interoperable with GPS/QZSS signal for seamless positioning
 - The same GNSS chipset can acquire signals from satellites as well as IMES Tx without serious modifications on existing chipset software. (No change on H/W design)
- Target users are cell-phone, smart-phone and handheld receiver with low dynamics.

IMES signal characteristics

Signal Properties of GPS & IMES

	GPS	IMES
Center Frequency	1575.42MHz	1575.42MHz <mark>+/- 8.2kHz</mark>
PRN ID	1-32	173-182
PRN Code Chip Rate	1.023MHz	1.023MHz
PRN Code Length	1ms	1ms
Data Rate	50bps	50bps
Modulation	BPSK	BPSK
Polarization	RHCP	RHCP

- The power of transmitter is
 - less than defined figure as Japanese radio regulation (-94.35dBW).
 - set value NOT over specified MAX receiving power strength at the user anntena input.

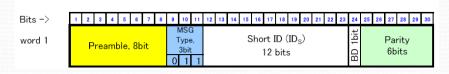
PRN Code for IMES

- 10 PRN Codes in 210 C/A codes which the US GPS maintained its allocation table were assigned for IMES in November 2007
 - <u>http://www.losangeles.af.mil/shared/media/document/AF</u>
 <u>D-101124-042.pdf</u>

PRN Signal	G2 Delay	Initial G2	First 10 Chips	PRN	Orbital Slot
Number	(Chips)	Setting (Octal)	(Octal)	Allocations	Orbital Slot
173	150	1362	415	QZSS – IMES3	Ground
174	395	1654	123	QZSS – IMES3	Ground
175	345	510	1267	QZSS – IMES3	Ground
176	846	242		QZSS – IMES3	
177	798	1142	635	QZSS – IMES3	Ground
178	992	1017	760	QZSS – IMES3	Ground
179	357	1070	707	QZSS – IMES3	Ground
180	995	501	1276	QZSS - IMES3	Ground
181	877	455	1322	QZSS – IMES3	Ground
182	112	1566	211	QZSS – IMES3	Ground
183	144	215	1562	QZS1	A1
184	476	1003	774	Reserved (QZS	TBD

NOTE: PRN codes are currently allowed to use only in JAPAN. 6

Message structure of IMES


is defined in the annex of IS-QZSS.

- Similar to QZSS and GPS L1C/A message structure,
 - use 30bit/word
- Four types of IMES messages are defined currently.
 - #0 and #1; Absolute position
 - Longitude, Latitude, Floor and/or Hight
 - Difference is resolution
 - #3 and #4; position ID
 - #3 for LBS managed by operators
 - #4 for local server connection
 - #0 or #1 and #3+#4 are transmitted flexible sequence
- Four message types are reserved for future applications

->	1 2 3	4 5 6 7 8	9 10 11	12 13 14 15 16 17 18 19	20 21	22 23 24	25 26 27 28 29 3
11	Prear	nble, 8bit	MSG Type, 3bit 0 0 0	Floor 8bit	Lat LSB	Lon LSB 3bits	Parity 6bits
12	CNT 3bit	Latitude 21bits (MSB)					Parity 6bits
3	CNT		Long	itude 21bits (MSB)			Parity
	3bit						

#			LSB				
<u></u>	Content	Bit Length	L3B		minimum	~	maximum
1	Floor	8	1 ·	th	−50 th	~	204 th
2	Latitude	23	2.1E-05 deg	(2.39 m)	-90 deg	~	90 deg
3	Longitude	24	2.1E-05 deg	(2.39 m)	-180 deg	~	180 deg

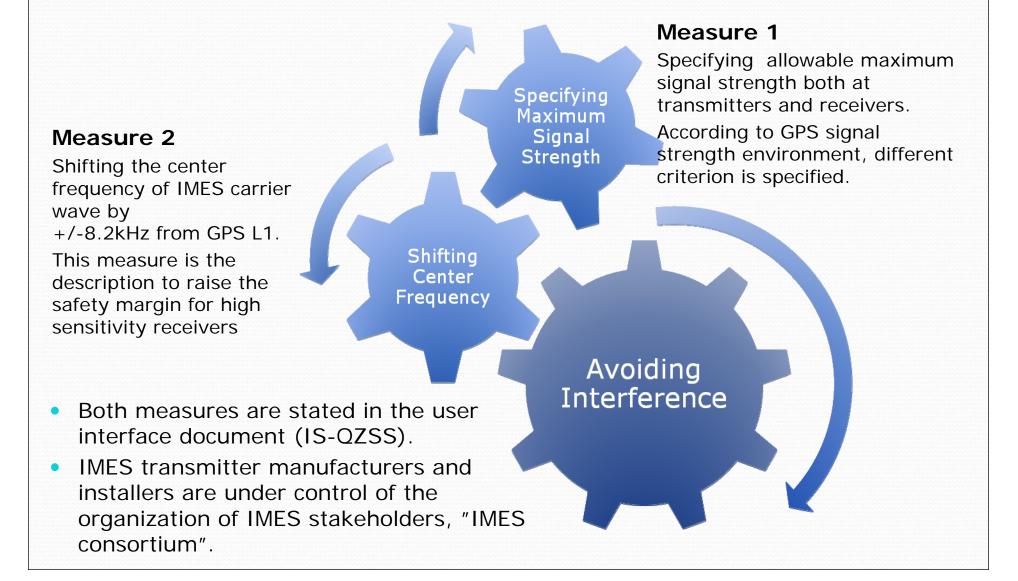
Message #0, Position Data, 3-Word Frame

Message #3, Short ID, 1-Word Frame

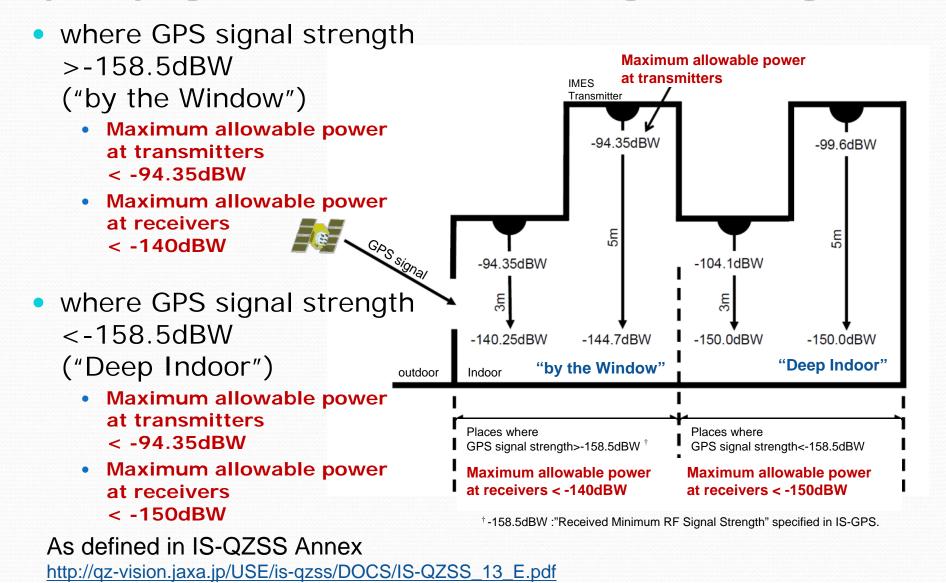
Applications

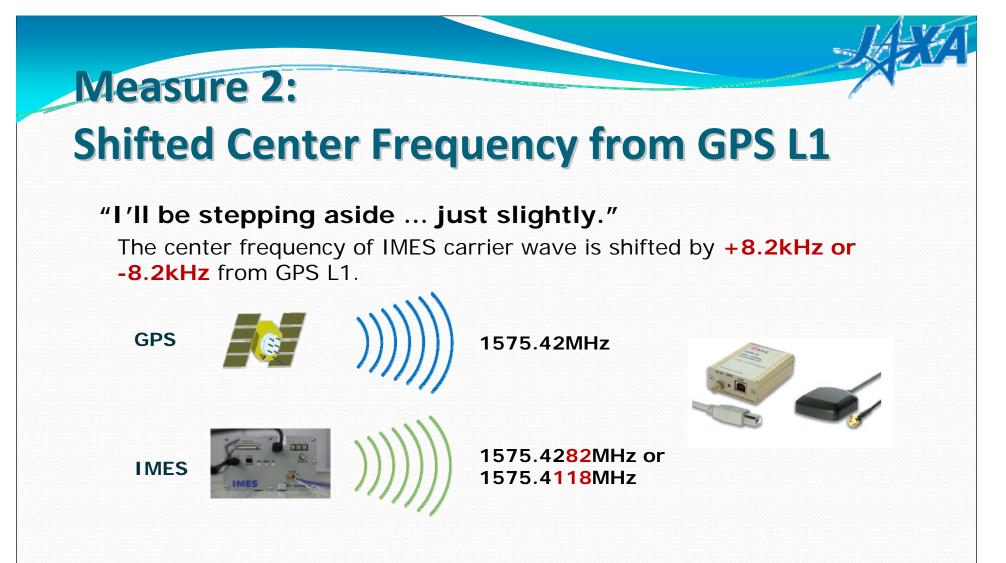
- Location Based Service
 - Check in service
 - Location based Advertisement.
- Disaster Management, rescue support
 - Evacuation support, and effective rescue underground mall, huge shopping mall complex, department store and so on.
- Provide DR reference point to reset INS sensor.
 - Spot IMES transmitters are installed at revolving doors, elevator halls, entrance doors into room.
- Tracking service for children, asset, entrance control into security area, and more

Avoiding Interference to GPS


Compatibility with GPS is Vital for IMES

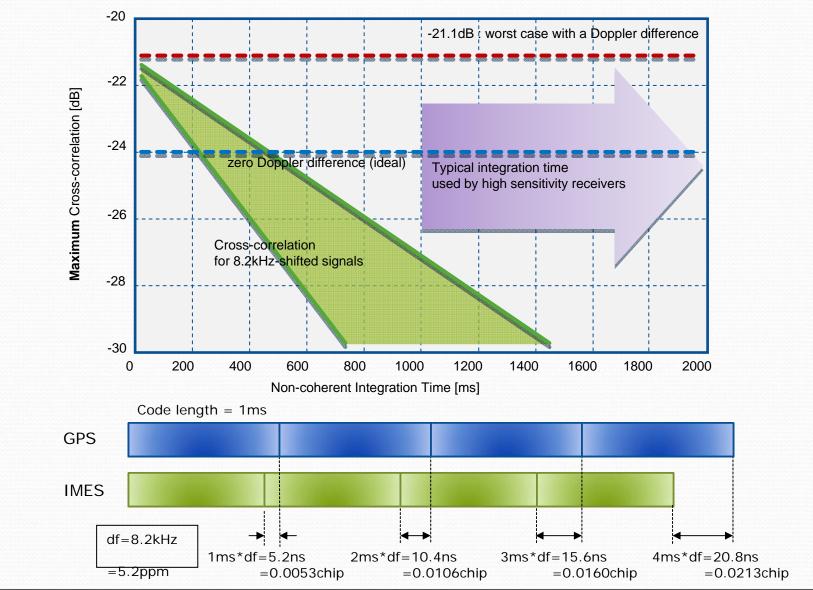
- IMES gets real power when it goes together with GPS, broadcasting signals of the same properties as the pioneer of the global navigation satellite system.
- IMES has not spared any effort to make sure **not** to give a harmful interference to GPS.



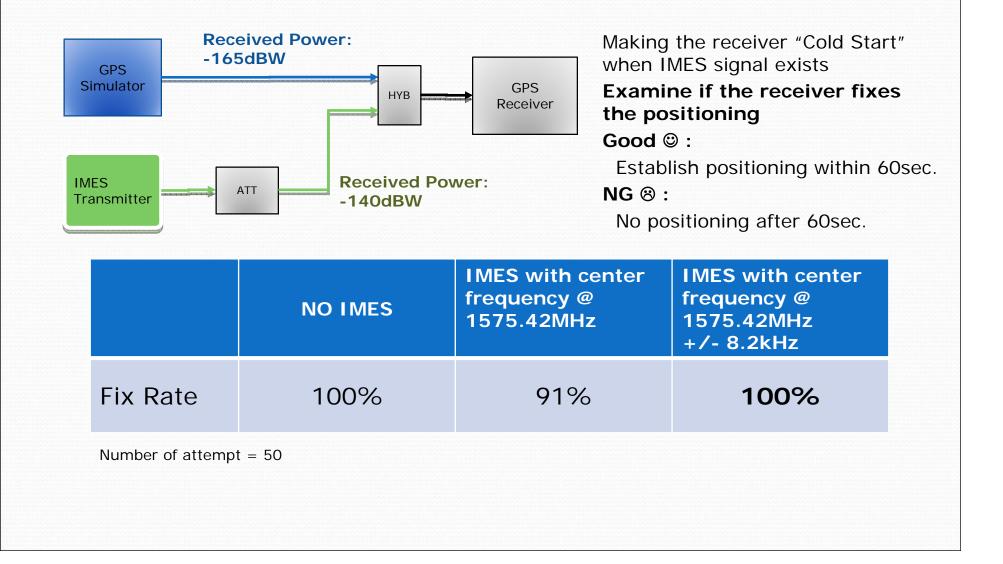

almost none

Two-Step Measures against Interference

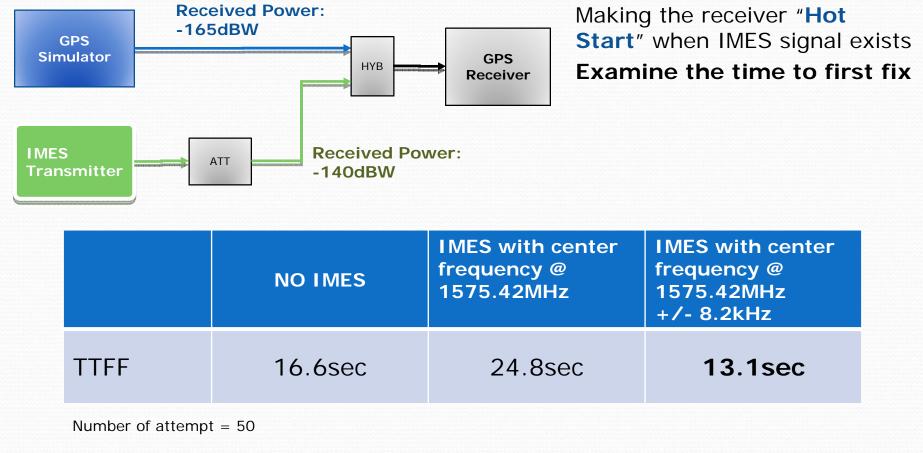
Measure 1: Specifying Allowable Maximum Signal Strength



Especially for high sensitivity receivers, this measure improves cross-correlation between the PRN codes of GPS and IMES by several dBs and raises the safety margin.


How Shifted Center Frequency work?

Measure 2:

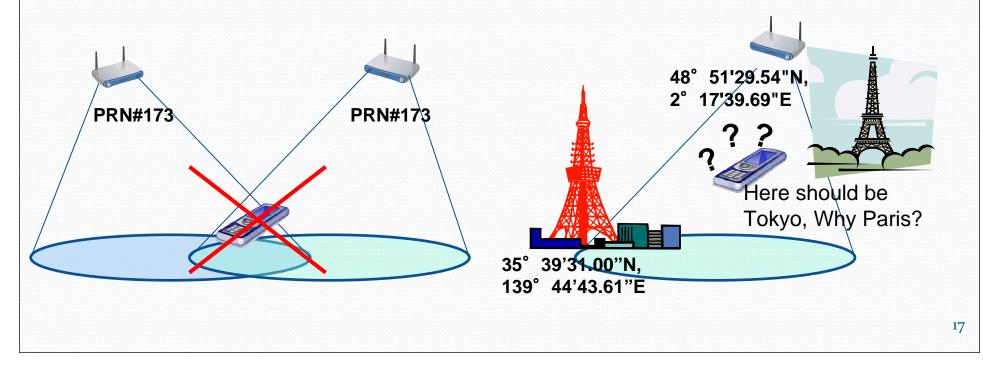


Experiment results – Fix Rate

Experiment results – TTFF

In "by the window" environment, no interference is confirmed, verifying the two-step measures do work effectively.

GPS – IMES Compatibility


Demonstration

- Demonstrations to be staged three times on 8 Sept. during:
 - 1) 11:00 11:15 JST : Morning break
 - 2) 13:15 14:15 JST : Lunch time
 - 3) 16:15 16:30 JST : Afternoon break
 - at Reception Hall
- Using High sensitivity Rx wired with GPS simulator and IMES Tx
- Examine
 - TTFF and C/N0

	GPS URP	# of GPS	IMES URP	IMES PRN
Open sky	-158.5 dBW	8 to 9	-140 dBW	173
By the window	-165 dBW	4	-140 dBW	173
Deep Indoor	-180 dBW	2	-150 dBW	173

Why should IMES Tx be controlled?

- To avoid interference between IMES signals.
- To prevent misuse on purpose or accidentally.
 - setting signal strength beyond specified value
 - transmitting wrong position

PRN Code management(1/2)

- PRN code assignment for each Tx devise.
 - to avoid overlapping same PRN code between neighboring cells.
- Installer or Tx manufacturer should register following set of Tx configuration to get PRN code:
 - Tx product number
 - location to be installed
 - broadcasting coordinate value
 - Tx EIRP
- Broadcasting position will be registered to "Location Information code database" managed by Geospatial Information Authority in Japan (GSI), simultaneously.

PRN Code management(2/2)

- Life cycle control will be required
 - To facilitate preventing misuse
 - Tx should be traced its location and owner/manager during whole life cycle after shipment, from installation to disposal.
- JAXA is taking a role to establish the framework of IMES PRN code management and implement transiently until operational management organization is established.
 - Operating procedure for the PRN code management is now being prepared.

Further JAXA's Works

- Finalization of technical specifications
 - Shortening of the time to read message
 - Message data rate change from 50 bps to 250 bps or more is under investigation.
 - Switching algorithms between outdoor GNSS tracking and indoor IMES tracking.
 - Message type definition
- Developing efficient management scheme and method
 - Operation procedure for PRN code management
 - Installation standard/guideline

Summary

- IMES is a solution for realization of seamless positioning.
- Two step measures are taken to avoid interference to GNSS signals
 - Specifying allowable maximum signal strength
 - Shifting the center frequency of IMES
- PRN code management procedure is being prepared by JAXA to prevent misuse on purpose or accidentally.

Thanks a lot for your attention!

