

 $\infty \infty \infty \infty \infty \infty \infty \infty$ ∞ Ω uasi-Zenith Satellite System $\infty \infty \infty \infty \infty \infty \infty \infty$ Ω uasi-Zenith Satellite System Ω

MICHIBIKI (QZS-1) and Space Service Volume

November 7, 2012

Japan Aerospace Exploration Agency

<u>Satoshi Kogure</u> and Motohisa Kishimoto

MICHIBIKI (QZS-1)

Reference Off-boresite Angle of MICHIBIKI

Main Robe of L1 Antenna Pattern

In our calculation, we used reference off-boresite angle at less than 22 deg (L1C/A and L1C signals) including a few mergin.

L2C: 24 deg

L5: 24 deg

Reference Off-boresite Angle of MICHIBIKI

From the antenna pattern of QZS-1, reference off-boresite angle of MICHIBIKI is following;

•L1C/A and L1C: 22 deg

•L2C: 24 deg

•L5: 24 deg

Lower Space Service Volume from QZS-1

Lower Space Service Volume:

Signals from QZS-1 is 100% around and beyond East Asia and Oceania Region.

The region is next page.

QZS -1 is at apogee QZS-1 coverage: MEO above East Asia and Oceania⁷

Upper Space Service Volume (GEO)

Figure 1: QZS-1 coverage for GEO

Red circle area is

QZS-1 coverage for GEO

QZS -1 is at descending node

Upper Space Service Volume (GEO)

- Min Received Power using 0 dBi RCP antenna at GEO -

Minimum Received Power using 0 dBi RCP antenna at GEO from QZS-1

•L1C/A: -185.3 dBW

•L1C: -185.3 dBW

•L2C: -188.7 dBW

•L5: -180.7 dBW