The Eighth Meeting of the International Committee on Global Navigation Satellite Systems, November 9 – 14, 2013, Dubai

SDCM present status and future. GLONASS signals development.

Prof. Grigory Stupak, Dr. of Science Deputy Director General – First Deputy Designer General JSC «Russian Space Systems»,

HAS ST

System of Differential Correction and Monitoring (SDCM)

Data downlinks

✓ 3 GEO relay satellites

✓ SiSnet server

Reference stations network (RS) ✓ 19 RS in Russia

✓ 4 RS abroad

SDCM data processing center

SDCM reference stations network

<u>19 reference stations in the territory of the</u> <u>RF:</u>

Pulkovo and Svetloe (Leningrad region), Mendeleevo, Moscow, Gelendzhik, Kislovodsk,

Novosibirsk, Irkutsk,

Petropavlovsk-Kamchatski,

Tiksi, Vladivostok, Magadan, Yuzhno-Sakhalinsk, Lovozero (Murmansk region),Yekaterinburg, Norilsk, Bilibino (Chukchi Peninsula), Noyabrsk (Tyumen region

<u>4 reference stations abroad:</u> «Bellingshausen» (Antarctica) «Novolazarevskaya» (Antarctica) «Progress» (Antarctica) Brazilia (Brazil)

Several stations simultaneously track one satellite

1. IP telephone 2. VPN module

- 2. VPN modu
- 3. Controller
- 4. Computer
- 5. GLONASS/GPS receiver 6. Hydrogen Mazer
- 7. UPS module

SDCM data dissemination system

IP: 79.104.19.214 port: 5555

SDCM constellation expansion

On the 11th of December, 2011 the «Luch-5A» satellite was successfully put into geostationary orbit

On the 3rd of November 2012, the «Luch-5Б» was successfully put into orbit

The «Luch-5B» satellite is scheduled for launch in Q1 of 2014

Main objectives of SDCM development

- SBAS L1 seamless coverage of the Russian territory
- SBAS L1 dual coverage of the central part of Russia by 2018
- Precise positioning services by SBAS L1/L5 and precise point positioning services by L1/L3 in the GLONASS band by 2018
- **SDCM certification for LPV-200 requirements**
- Plan to use SDCM as a basis for future precise point positioning service
- Verification of SBAS+ technology

SDCM capabilities with employment of SBAS+ technology

Civil aviation

ICAO category approach
Airfield flights

Agriculture

- □ Controlling the vehicle's steering automatically for cultivation of small-seeded crops and field mapping
- □Accurate and quick connection of fields and controlling the vehicle's steering automatically for cultivation of large-seeded crops

ROAD BUSINESS

□ Checking the state of a pre-lane road

□ Accurate and quick connection of construction sites in the system of absolute coordinates

RIVER TRANSPORT

□Navigation in coastal zone

□Accurate and quick location of navigation signs

RAILWAY TRANSPORT SAFETY

- □ Tracking trains on adjacent railroad tracks.
- □ Optimization of the engine's steering

GEODESY and MAPPING

- **Updating mapping data databases**
- Building maps of pipelines and cable routings
- Natural resources mapping
- □ Mapping real estate properties and construction sites

Development of SDCM

Broadcasting satellites

✓ 3 L1 GEO
✓ 1 L1/L3/L5 GEO
✓ SiSnet server

Unified reference stations network

✓ 46 are located in Russia

 ✓ up to 50 abroad, 8 of which are located along the Russian boarder

SDCM center

✓ 2 regional

SBAS+ format is an expansion of SBAS standard through broadcasting refined orbits and clocks

Strategy to develop GLONASS open access navigation

Nas		L1	L2	L3	L1	L2	Future
	«GLONASS» satellite	L10F	L2OF	-		-	
	«GLONASS-M» satellite	L10F	L2OF	L3OC From 2014/ 2015		-	
	«GLONASS -K1» satellite	L10F	L2OF	L3OC test		-	
	«GLONASS-K2» satellite	L10F	L2OF	L30C L30C	L10C L10C	L20C	
	«GLONASS-KM» satellite	L10F	L2OF	L30C L30C	L10C L10C	L20C	L10C, L50C
		FDMA			CDMA		

GLONASS signals in L2 band

- **SBAS** wide-band differential system which ensures integrity and better navigation accuracy
- **ARAIM** algorithm which ensures only integrity
 - SBAS adjusts GNSS navigation information in case of a partial access and presence of other interferences
 - ARAIM is capable of only identifying and eliminating information sent by "unreliable" satellites from navigation solution
 - > It is SBAS provider who is responsible for quality of the service
 - > In case ARAIM is used no responsibility is identified

SBAS - Satellite-based augmentation system

ARAIM – Advanced receiver autonomous integrity monitoring

Problem areas of replacing SBAS by ARAIM:

- Inability to improve navigation information as it could be possible if using SBAS corrections
- Problems with combined processing of various GNSS information using ARAIM algorithm (they differ in: systems of coordinates; time scales; accuracy of determining position and clocks corrections; accuracy of navigation solutions; mathematical models of satellites movement;...)
- Identifying who will be responsible for quality of the service and effects of poor solutions (developer of the algorithm - ?; developer of SW - ?; developer or manufacturer of equipment - ?;...) WHO?

SBAS and ARAIM will become interoperable systems in the near future rather than an alternative to each other.

SBAS together with ARAIM !

It is essential to continue dialogues and multilateral cooperation on compatibility and interoperability of GNSS

Thank you for your attention!

Prof. Dr. Grigory G. Stupak

stupak_gg@rniikp.ru tel: + 7 495 6739399