

Adjacent Band Compatibility Study for S-band RDSS/RNSS

Liu Zhijian, Shen Jiemin Beijing Satellite Navigation Center November, 2014

- 1. Overview of RDSS/RNSS Adjacent Band Compatibility
- 2. Interference Principle and Compatibility Analysis Method
- 3. Assumed Characteristic
- 4. Compatibility Assessment
- 5. Conclusion

RDSS/RNSS Adjacent Band Compatibility

◆ 2483.5-2500MHz used for RDSS/RNSS \checkmark Before 2012, primary service, only in parts of the world. \checkmark WRC-12, primary service, all over the world. \bullet 2400-2483.5MHz used for WLAN ◆2500-2690MHz used for IMT **WLAN and IMT are adjacent to RDSS/RNSS that** could cause unacceptable interference to RDSS/ **RNSS**.

Interference Principle(1)

≻In-band Interference

•Refer to the reduction of the receiver sensitivity

•Caused by the out-of-band unwanted radiation from interfering system into the desired system receiver

•Adjacent Channel Leakage Ratio (ACLR)

Interference Principle(2)

≻Out-of-band Interference

•Refer to receiving unwanted signals without enough choice at the out-of- band

•Cuased by receiving interfering system signals with the non-ideal filters of the desired system receiver

Adjacent Channel Selectivity (ACS)
 Blocking Characteristic

Compatibility Analysis Method

- >For inter-service coexisted in **cofrequency band**
 - Link-budget-based deterministic analysis method
 Simply and effectively
 - •Adapted for the qualitative and quantitative analysis of interference.from a single station to a single station.
- But for inter-service coexisted in **adjacent frequency** band
 - ≻The above method appears incapable.
 - Spectral Separation Coefficient(SSC)
 - ► Aggregated Gain Factor (Gagg)

Compatibility Analysis Method

1) Definition and use of SSC

- Equal the interfering signal to the nomarlized equivalent noise power spectral densities at the frequecy of the desired signal.
- The definition of SSC is as follows:

$$\beta_{x,y} = \int_{-Bx}^{Bx} \left| \overline{H_x}(f) \right|^2 \left| \overline{H_y}(f) \right|^2 \overline{S_x}(v) \overline{S_y}(v) dv$$

- The detailed deduction refers to ITU-R M.1831.
- Then the power spectral density of interfering signal at the frequency band of disired signal can be written as follows:

$$N_{y0} = P_y + L_y + \beta_{x,y}$$

- P_y: interfering signal power (dBW)
- L_v: path loss (dB),

Compatibility Analysis Method

2) Definition and use of Gagg

- •Assess the impact from transmit signals by multiple stations within one system on the noise floor.
- •The detailed definition refers to ITU-R M.1831.
- •Given Gagg and N_0 is known, $N_{x,0}$ the noise power spectral density in single station from multiple stations transmitting within one system can be written as:

$$N_{x0} = P_x + L_x + \beta_{x,x} + G_{agg}$$

- N₀: noise power spectral density of the system without any interference
- P_x : maximum transmitting power from single station
- $\beta_{x,x}$: SSC of the system signal
- Lx : signal path loss
- •The sum of all noise power spectral densities is expressed by

$$N_{xeff} = N_0 + N_{x0}$$

1) Assumed RDSS Characteristic

Walk constellation : 27/3/1, at 56° nominal inclination Orbit altitude :26559.8km , orbit eccentricity: 0. Modulation: BPSK , code rate of 8.184MHz ,

Center frequency : 2492.028MHz.

Power : from -152dBW to -157dBW, with bit rate of 50bps/8000bps.

Convolution code with coding efficiency of 1/2 and constraint length of 7.

2) Assumed WLAN Characteristic

Sub-channel:14

Bandwidth: 22 MHz

Power: from 10mW to100mW

Central frequency of each channel is shown in the table,

Channel	Center Frequency	Channel	Center Frequency	Channel	Center Frequency
1	2412MHz	6	2437MHz	11	2462MHz
2	2417MHz	7	2442MHz	12	2467MHz
3	2422MHz	8	2447MHz	13	2472MHz
4	2427MHz	9	2452MHz	14	2477MHz
5	2432MHz	10	2457MHz		
note: 14 th channel is only used in Japan.					

2) Assumed WLAN Characteristic

In practice, three channels in non-overlapped frequency band s are chose , such as 1, 6, 11, as shown in this figure

2) Assumed WLAN Characteristic

According to the IEEE 802.11-2007 standard, WLAN devices transmit power ranges from 10mW to 100mW.

1) G_{agg} and SSC calculation

-Only the WLAN device nearest to RDSS receiver is taken into account

-Without considering the aggregated impact of WLAN

-Gagg is 11.2dB through simulation.

-Given WLAN device uses 13th channel,

-The SSCs of desired RDSS and desired WLAN system are calculated as shown in the following table.

Desired system	Filtered RDSS (dB/Hz)	Unfiltered RDSS (dB/Hz)
RDSS	-108.2	-94.4
WLAN	-107.4	-93.6

- 2) Interference Analysis from RDSS to WLAN
 - -The maximum arrived power of single satellite from RDSS system is -152dBW.
 - -Considering Gagg and SSC
 - Interference power spectral densities:
 - filtered RDSS to WLAN: -248.2dBW/Hz
 - •unfiltered RDSS to WLAN : -234.4dBW/Hz
 - Far lower than the signal power from WLAN device(10mW~100mW)
 - RDSS induces no interference onto WLAN device.

3) Interference analysis from WLAN to RDSS

Considering filtered WLAN, filtered and unfiltered RDSS

Interference power spectral density from WLAN to RDSS:

Distance between WLAN	Interference power spectral density from WLAN to RDSS (dBW/Hz)		
(transmit power options: 100mW, -10dBW)	Filtered $(ssc = -108.2)$	Unfiltered $(ssc = -94.4)$	
1	-158.5013	-144.7013	
5	-172.4807	-158.6807	
10	-178.5013	-164.7013	
20	-184.5219	-170.7219	
40	-190.5425	-176.7425	

3) Interference analysis from WLAN to RDSS

Arrived C/N_{eff} of RDSS signal with interference

Distance between WLAN and RDSS receiver (m)	Arrived C/Neff of RDSS signal with interference (dBW/Hz)		
(transmit power options: 100mW,-10dBW)	Filtered $(ssc = -108.2)$	Unfiltered (ssc = -94.4)	
1	1.5013	-12.2987	
5	15.4807	1.6807	
10	21.5013	7.7013	
20	27.5219	13.7219	
40	33.5425	19.7425	

The relations between E_b / N_{eff} and C / N_{eff} is given by below equation, $[E_b / N_{eff}]_{dB} = [C / N_{eff}]_{dBHz} - [R_b]_{dBbps} - [L]_{dB}$

• where:

 $[E_b / N_{eff}]$: power of per bit to noise power spectral ratio (dB) $[C/N_{eff}]_{dBHz}$: carrier noise power to noise power spectral ratio (dBHz) $[R_b]_{dBbps}$: information rate (dBbps) $[L]_{dB}$: dispreading and demodulation (dB)

Given Rb are 50bps and 8kbps respectively and the loss of dispreading and demodulation is 1dB, E_b / N_{eff} results is shown in the table:

Distance between	E_b / N_{eff} of RDSS with interference dBW/Hz)				
WLAN and RDSS	Filtered (ssc = -108.2)		Unfiltered (ssc = -108.2)		
(transmit power options:	Rb=50bps	Rb=8kbps	Rb=50bps	Rb=8kbps	
100mW, -10dB W)					
1	-16.4987	-38.4987	-30.2987	-52.2987	
5	-2.5193	-24.5193	-16.3193	-38.3193	
10	3.5013	-18.4987	-10.2987	-32.2987	
20	9.5219	-12.4781	-4.2781	-26.2781	
40	15.5425	-6.4575	1.7425	-20.2575	
Note: WLAN device (excluding antenna gain, and transmitting signals according to standard values rigidly).					

Analysis results

➤There is no interference from RDSS to WLAN service in S band.

➢ If WLAN service use the adjacent frequency to the RDSS in S band, there could be unacceptable harmful interference to RDSS from WLAN.

Conclusion

- If WLAN used in open air, its channel using and transmitting power should be rigidly controlled.
- We propose that the RDSS/RNSS adjacent frequency compatibility study in the L,S,C band should be conducted based on the real system characteristic.
- To promote setting the protection standard of RDSS / RNSS service from adjacent frequency service in the L,S,C band under the ITU framework.

Thanks for your attention!

liuzhijian@bsnc.com.cn

shenjiemin@bsnc.com.cn