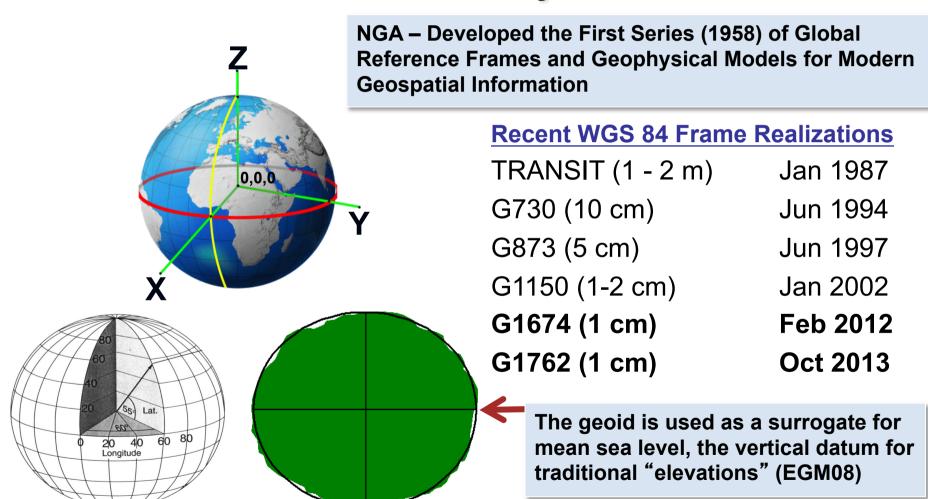

Know the Earth... Show the Way... Understand the World

ICG-9 Working Group D Transformations to Classical Horizontal Mapping Datums

Stephen Malys NGA Senior Scientist for Geodesy and Geophysics 9-14 November, 2014 Prague, Czech Republic

Know the Earth... Show the Way... Understand the World

The 'Realization' of an Earth-Centered, Earth-Fixed Global Reference Frame

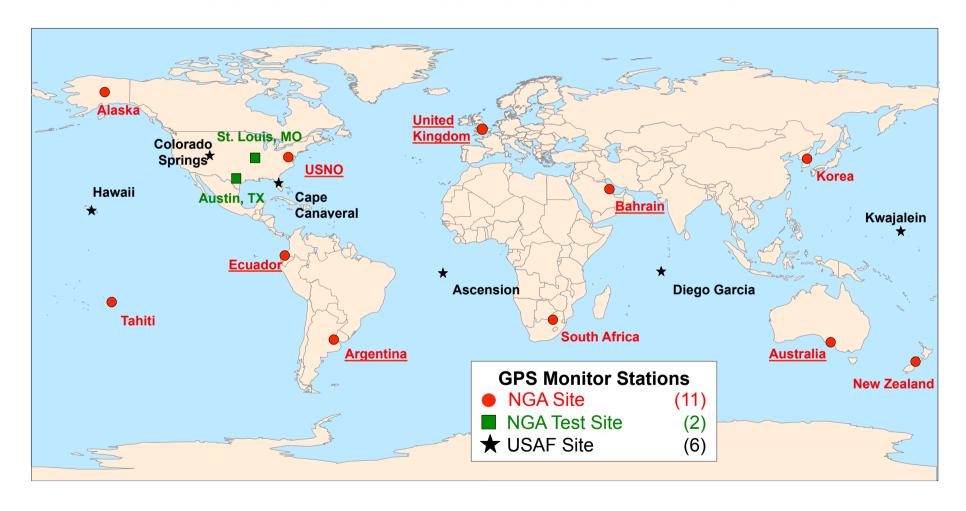


A globally-distributed set of station coordinates

- Infer the location of the ORIGIN
- Infer the ORIENTATION of a set of ECEF Axes
- Infer the SCALE of the reference frame

Know the Earth... Show the Way... Understand the World

World Geodetic System 1984



WGS 84 Ellipsoid: a = 6378137, f = 1/298.257223563

Know the Earth... Show the Way... Understand the World

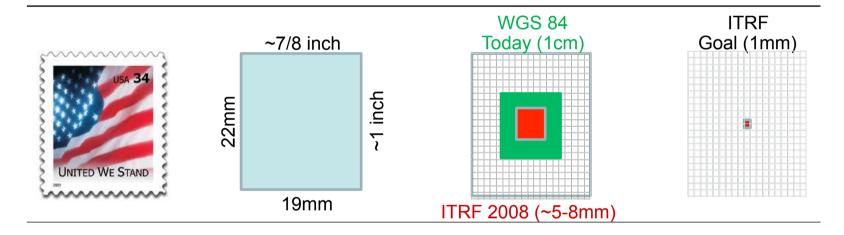
US GPS Monitor Station Network

Know the Earth... Show the Way... Understand the World

Verification of WGS 84 Reference Frame Accuracy: Comparisons to IGS GPS Orbits

- Transformation parameters are computed daily between NGA and IGS GPS orbits
- These transformations are a metric for the alignment of the WGS TRF to the ITRF
 - Mean results from first 242 days of 2014
 - All values in the vicinity of 1 cm at surface of Earth

	ΔX(cm)	ΔY(cm)	ΔZ(cm)	Rx(mas)	Ry(mas)	Rz(mas)	Scale (ppb)
Mean	0.0	-0.0	-1.0	-0.08	0.07	0.04	-0.55
Std Dev	0.0	0.0	1.0	0.08	0.09	0.13	0.14


WGS 84 (G1762) is coincident with ITRF2008 (IGb08) at the 1cm level

Know the Earth... Show the Way... Understand the World

Goals for a Future ITRF

*2010 National Research Council Study: The ITRF must be both accurate and accessible at the 1-millimeter level, with a stability of 0.1 millimeters per year

To get better (by 2030?), measurement and modeling of geocenter motion becomes necessary.

Examples surface mass transport causing geocenter motion include snow and water changes over continents, including melting glaciers, ground water changes; annual hemispheric water mass exchange in oceans (N. hemisphere has more mass in N. winter); and polar ice sheet variations

^{*} Precise Geodetic Infrastructure, National Requirements for a Shared Resource, National Research Council of the National Academies, The National Academy Press, 2010

Know the Earth... Show the Way... Understand the World

Sample Modern Geocentric Terrestrial Reference Frames

WGS 84 (G1762)

PZ90.11 (Earth Parameters 1990 – Parametry Zemli 1990)

CTRF 2000/CGCS 2000 (China Terrestrial Reference Frame/China Geodetic Coord. System)

GDA94 (Geocentric Datum of Australia)

IAG Commission 1 Reference Frames

•Europe EUREF

South and Central America SIRGAS

•North America NAD83

•Africa AFREF

•Asia-Pacific APREF

•Antarctica ITRF2000, RSRGD2000

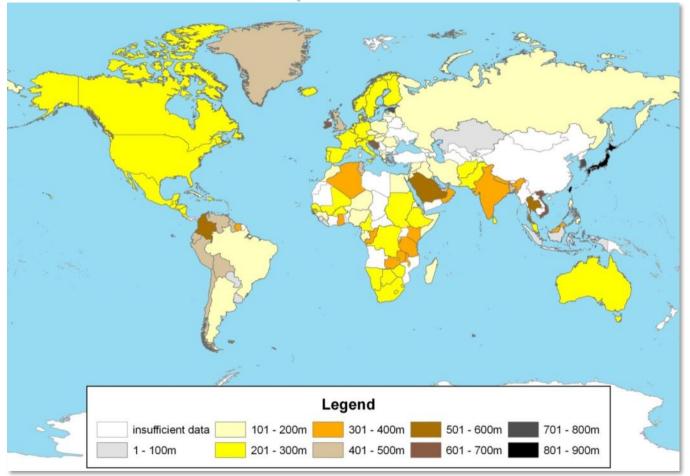
These frames may also have national sub-realizations

- SWEREF (Sweden)
- •MAGNA SIRGAS (Colombia)

Geocentric National datums include that cover a limited geographic area

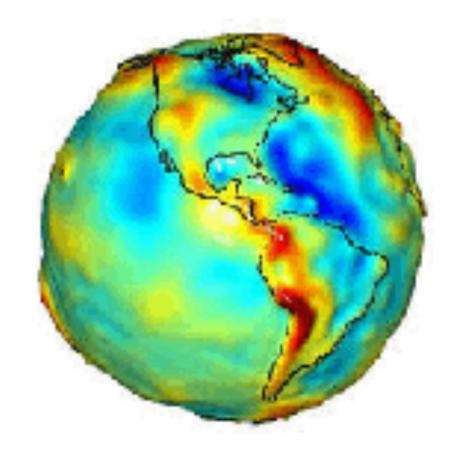
- Hartebeesthoek 94 (South Africa)
- •New Zealand Geodetic Datum 2000

Maps & Charts based on any of these modern Geocentric Reference Frames Do NOT Require a Transformation for any practical application and are


INTEROPERABLE for all

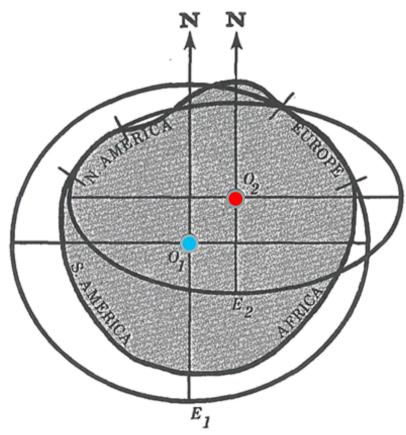
Practical purposes

Know the Earth... Show the Way... Understand the World


Classical (non-Geocentric) Horizontal Mapping Datums DATUM SHIFTS IN UTM X, Y GRID FROM LOCAL TO WGS84

NGA maintains a set of Horizontal Datum Transformations to/from WGS 84 for more than 226 datums

The Earth's Gravity Field and the Geoid



The concept of a 'geoid' was introduced by J.B. Listing (1872)

- The Earth's gravity field is not uniform around the planet.
- A surface of equal potential of the gravity field, that is close to Mean Sea Level, is called *Geoid*.
- The departures of the geoid from the surface of an ellipsoid of revolution are called geoid undulations.

Know the Earth... Show the Way... Understand the World

Spatial Relationship of the Geoid with Two "Regional Best-fitting" Ellipsoids

Based on: Irene Fischer, Defense Mapping Agency Topographic Center, Wash DC, The Figure of the Earth – Changes in Concepts, Geophysical Surveys 2 (1975) 3-54

Know the Earth... Show the Way... Understand the World

Ellipsoids 1830-2014

Ellipsoid Parameters							
Ellipsoid	Semi-Major Axis	Inverse Flattening					
Name (Year Computed)	a(m)	1/f					
Airy (1830)	6378563.396	299.324964					
Bessel (1841)	6377397.155	299.152813					
Clarke 1866	6378206.4	294.978698					
Clarke 1880 (modified)	6378249.145	293.4663					
Clarke 1880	6378249.145	293.465					
Everest (1830)	6377276.345	300.8017					
International (1924)	6378388	297					
Krassovski (1940)	6378245	298.3					
Mercury 1960	6378166	298.3					
Modified Mercury 1968	6378150	298.3					
Australian National	6378160	298.25					
South America 1969	6378160	298.25					
Geodetic Reference System 1967	6378160	298.2471674273					
WGS72	6378135	298.26					
Int. Assoc. of Geodesy (1975)	6378140 ±5	298.257 ±.0015					
Geodetic Reference System 1980(WGS84)	6378137	298.25:7222101					
Int. Assoc. of Geodesy (1983)	6378136 ±1	298.257					

A classical (pre-satellite era) horizontal mapping datum was defined by 5 parameters

An Initial Point (F_0 , I_0) An initial Azimuth (a_0) and An ellipsoid (a, 1/f)

Example:

North American Datum 1927 (F₀, I₀) at Meades Ranch, Kansas Ellipsoid was Clarke 1866

Still used today

Table Ref: Rapp, R.H., Geometric Geodesy, Part I, Ohio State University, 1984

Know the Earth... Show the Way... Understand the World

Sample Datum Transformation Parameters

For use with standard Molodensky transformation formulas

Continent: ASIA													
Local Geodetic Datums		Reference Ellipsoids and Parameter Differences			No. of Satellite Stations Used	Transformation Parameters							
Name	Code	Name	Δa(m)	Δf x 10 ⁴		Cycle Number	Pub. Date	ΔX(m)		ΔY(m)		ΔZ(m)	
AIN EL ABD 1970	AIN	International 1924	-251	-0.14192702									
Bahrain Island	AIN-A	1,72.			2	0	1991	-150	<u>+</u> 25	-250	<u>+</u> 25	-1	<u>+</u> 25
Saudi Arabia	AIN-B				9	0	1991	-143	<u>+</u> 10	-236	<u>+</u> 10	7	<u>+</u> 10
DJAKARTA (BATAVIA)	BAT	Bessel 1841	739.845	0.10037483									
Sumatra (Indonesia)					5	0	1987	-377	<u>+</u> 3	681	<u>+</u> 3	-50	<u>+</u> 3
EUROPEAN 1950	EUR	International 1924	-251	-0.14192702									
Iran	EUR-H				27	0	1991	-117	<u>+</u> 9	-132	<u>+</u> 12	-164	<u>+</u> 11
HONG KONG 1963	HKD	International 1924	-251	-0.14192702									
Hong Kong		1)24			2	0	1987	-156	<u>+</u> 25	-271	<u>+</u> 25	-189	<u>+</u> 25
HU-TZU-SHAN	HTN	International	-251	-0.14192702									
Taiwan		1924			4	0	1991	-637	<u>+</u> 15	-549	<u>+</u> 15	-203	<u>+</u> 15
INDIAN	IND	Everest											

Know the Earth... Show the Way... Understand the World

Sample Local or Regional Datums <u>Possibly</u> Still in Use or Likely to be Encountered by a GNSS User

Sierra Leone 1960 Yacare

Liberia 1964 European (1950)

Djakarta Qornoq

Ireland 1965 Tananarive Obsv 1925

Hjorsey 1955 Luzon

Naparima Tokyo

Provisional South American 1956 Indonesia 1974

Ordnance Survey of Great Britain 1936 Campo Inchauspe

Hu-tzu-shan Chua Astro

Corrego Alegre Geodetic Datum 1949

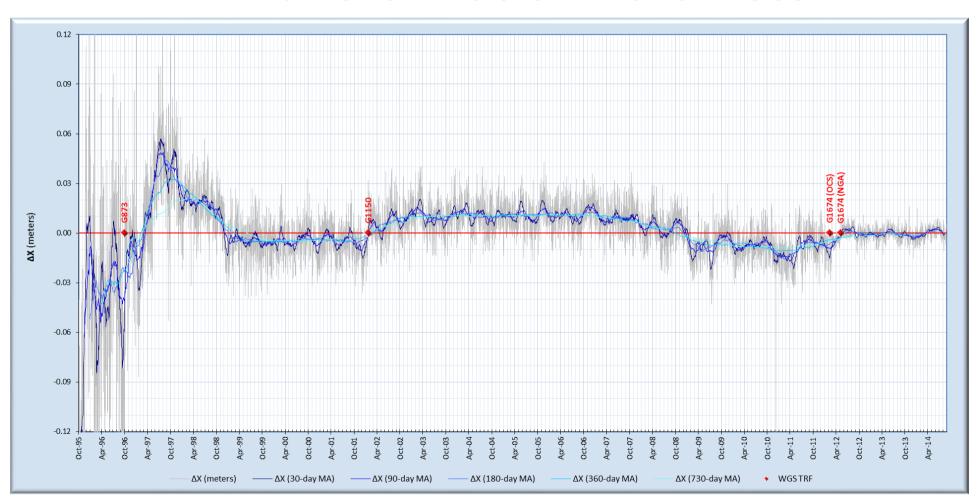
These are just samples

226 Horizontal Datums Appear in our NGA Publication on WGS 84

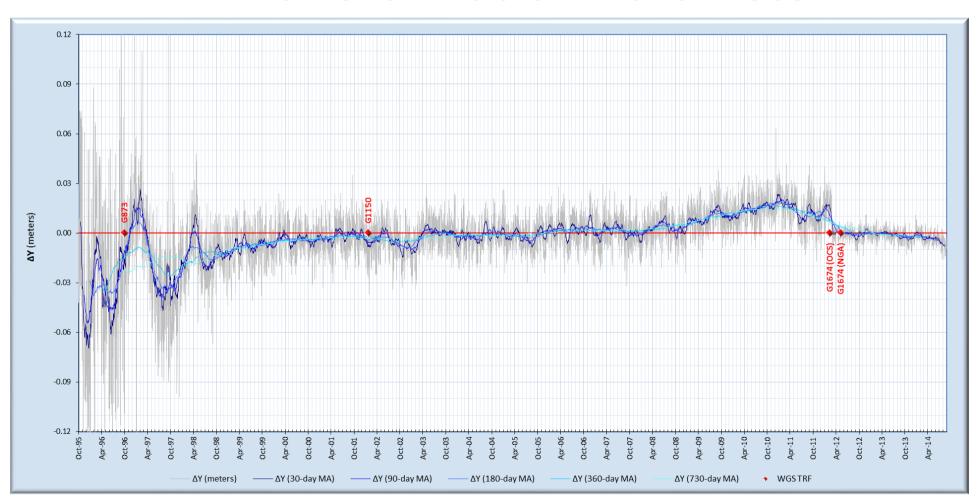
Know the Earth... Show the Way... Understand the World

More than 1200 Distinct Horizontal Mapping and Charting Datums Have been Created in Human History

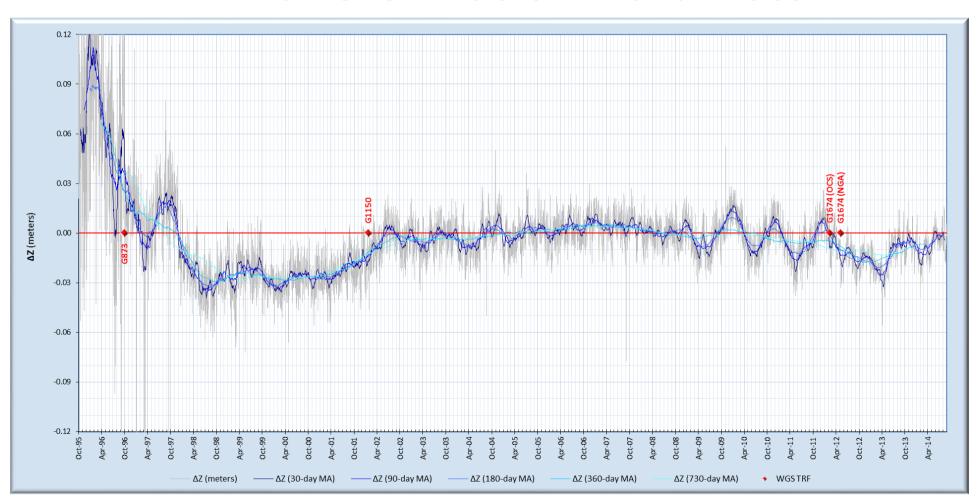
- Which of these datums are still in practical use?
- Which can be categorized as 'for office use' (by mapping agencies/orgs)?
- Which can be retired to history and declared extinct?
- Practical issue for many GNSS Receivers
 - Compatibility of datum lists among receivers
 - Agreement on transformation parameters among receivers
 - A common, authoritative list would reduce confusion over these transformations
 - Promote use of GNSS in numerous developing countries that still use classical datums
- Proposed Working Group D Goal: Develop and maintain a Multi-National, <u>Authoritative list of Horizontal Mapping and Charting datums that are still in use</u> and therefore may be encountered by a GNSS user
 - A corresponding authoritative set of datum transformation parameters would also be of significant value to the world-wide GNSS user community



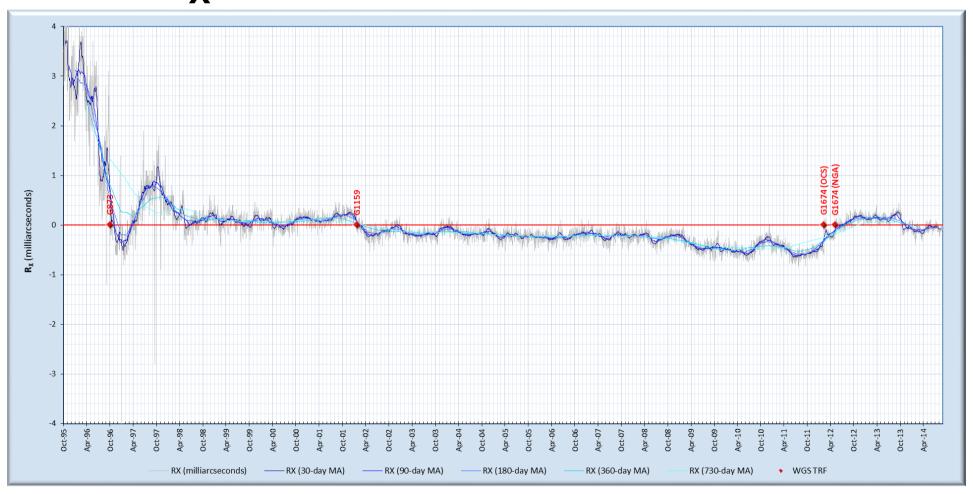
Know the Earth... Show the Way... Understand the World nga.mil | @nga_geoint | facebook.com/natlgeointagency


Know the Earth... Show the Way... Understand the World

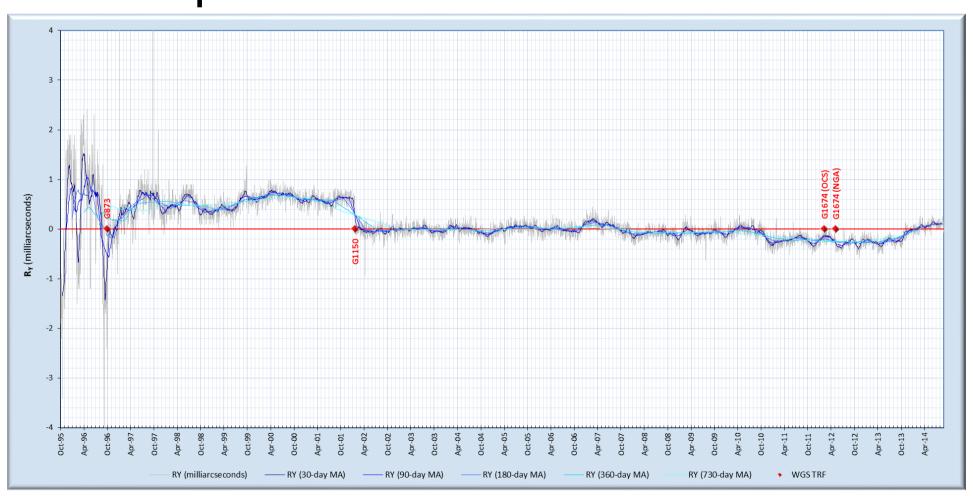
AX Transformation Parameter


Know the Earth... Show the Way... Understand the World

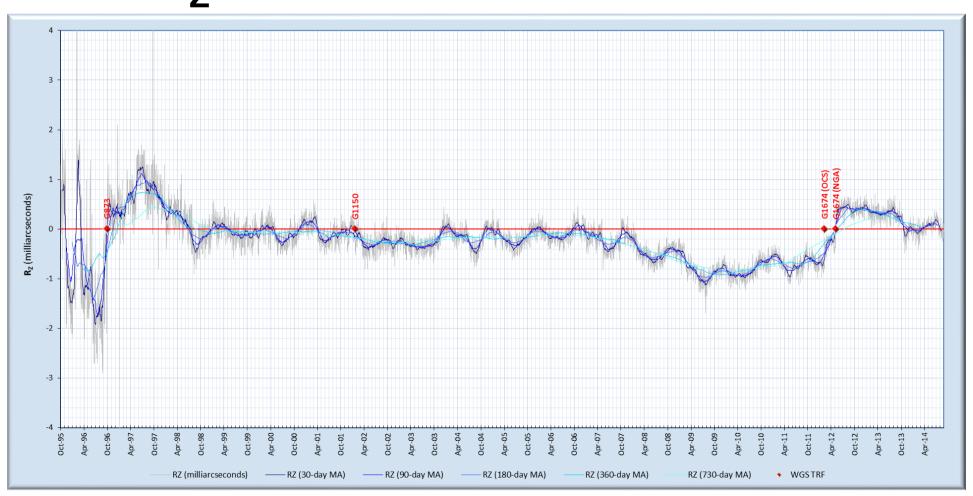
ΔY Transformation Parameter


Know the Earth... Show the Way... Understand the World

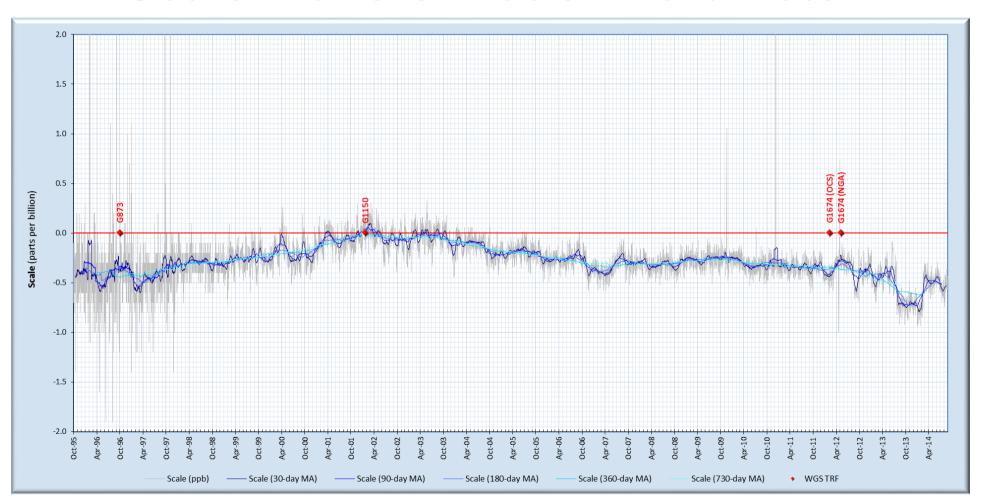
ΔZ Transformation Parameter


Know the Earth... Show the Way... Understand the World

R_x Transformation Parameter


Know the Earth... Show the Way... Understand the World

R_Y Transformation Parameter


Know the Earth... Show the Way... Understand the World

R_Z Transformation Parameter

Know the Earth... Show the Way... Understand the World

Scale Transformation Parameter

