

Know the Earth... Show the Way... Understand the World

Why the Greenwich Meridian Moved

Stephen Malys NGA Senior Scientist for Geodesy and Geophysics 3 November, 2015

Approved for public release 16-023

Sir George Airy (1801-1892) 7th Astronomer Royal

https://en.wikipedia.org/wiki/George_Biddell_Airy

Prime Meridian (0^o Longitude...Greenwich Meridian)

The Home of Time Garden

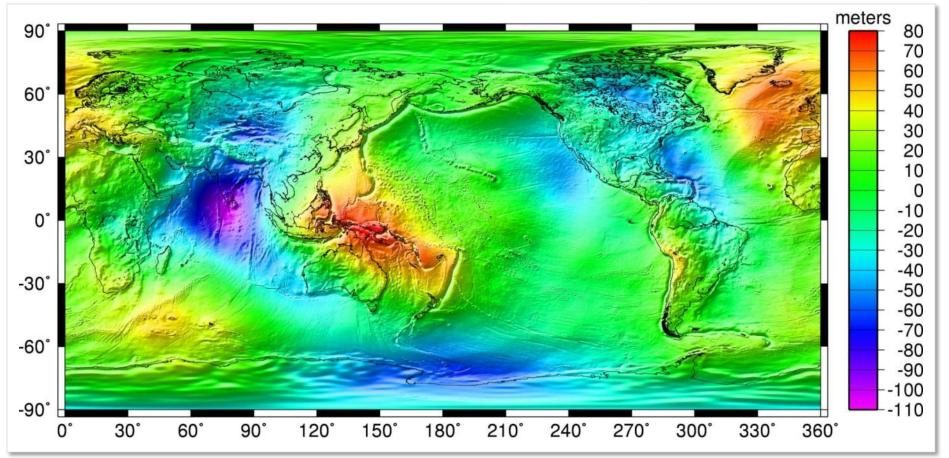
This garden commemorates the International Meridian Conference of 1884, held in Washington DC, at which it was voted that the Meridian of longitude passing through the Royal Observatory at Greenwich should be adopted as the Prime Meridian of the World. The garden contains Home of Time roses, officially planted on 1 October 1998 by representatives of the original voting nations.

Austria Hungary	Guatemala
Brazil	Hawaii
Chile	Italy
Columbia	Japan
Costa Rica	Liberia
Denmark	Mexico
France	Netherland
Germany	Paraguay
Great Britain	Russia

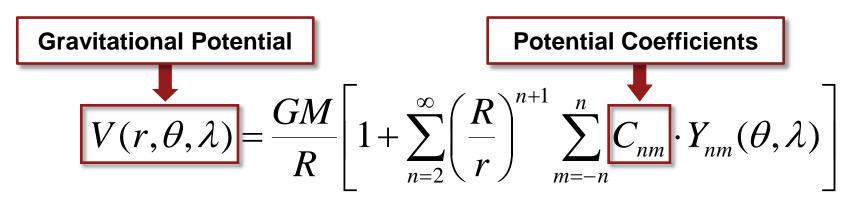
San Domingo Salvador Spain Sweden (with Norway) Switzerland Turkey United States Venezuela

BSERVATORY

International Meridian Conference of 1884

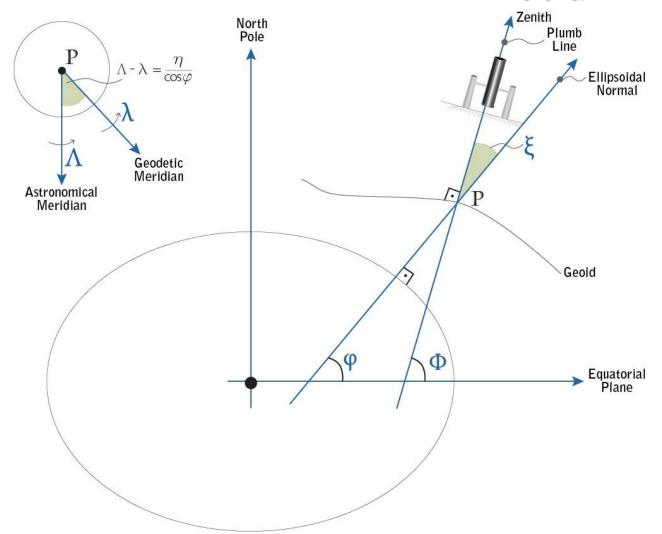

The Airy meridian (dotted line) and the ITRF and WGS 84 Zero Meridian (solid line)

Imagery © 2014 Google Maps, Infoterra Ltd & Bluesky.


Geoid Undulations from the Earth Gravitational Model 2008 (EGM08)

A Global Potential Field and its Representation

The gravitational field generated by a mass distribution can be described *completely* using a scalar function of position called potential.



Introduced by Gauss (1839), Clairaut and Stokes (~1840) then by Helmert (1884) For practical application, truncate " ∞ " to some maximum degree "Nmax".

1839, C.F. Gauss	Nmax =	4 ('WMM 39') ⇒	1	4	Magnetic Pot. Coeff.
1960, I. Fisher	Nmax =	13 (Mod Mercury	/)⇒ 1	92	Gravitational Pot. Coeff.
1998, F. Lemoine et.al.	Nmax =	360 (EGM96) ⇒	130,3 °	17	Gravitational Pot. Coeff.
2012, N. Pavlis et.al.	Nmax = 2	2160 (EGM08) ⇒	4,669,9)17	Gravitational Pot. Coeff.
Approved for public release 13-277					

Know the Earth... Show the Way... Understand the World

Deflection of the Vertical (η , ξ)

Schematic of a Typical Transit Circle

Adapted from: Norton WA (1872) A Treatise on Astronomy, Spherical and Physical, 4th edn. John Wiley & Son, New York, p 31

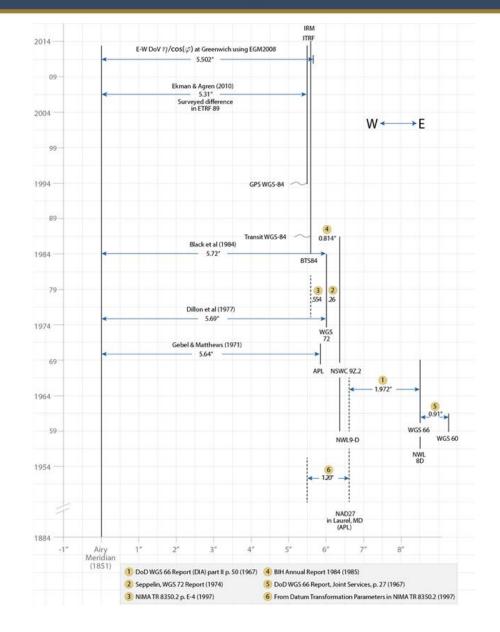
Approved for public release 16-023

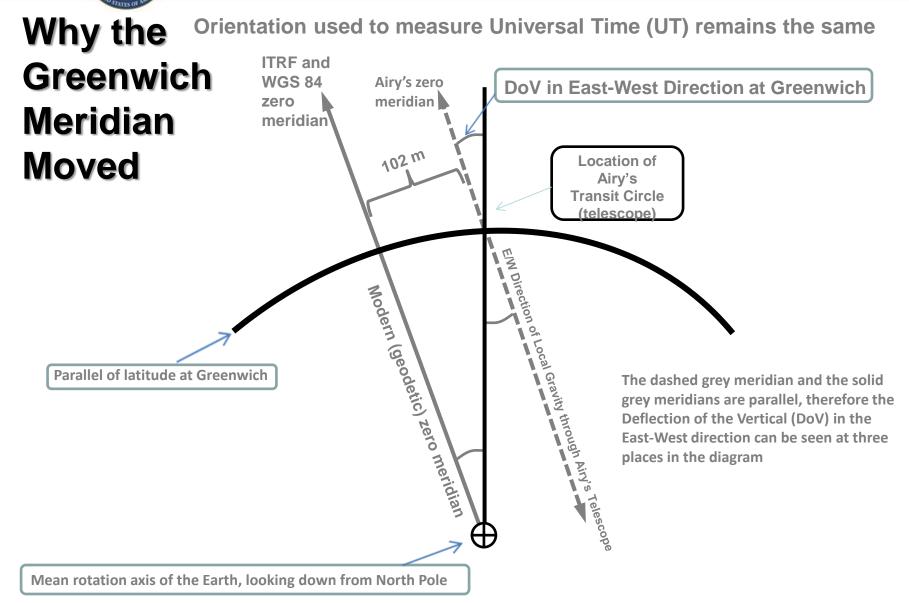
BIH Terrestrial System 1984 (BTS 84)

Original WGS 84 reference frame was created by Transforming NSWC 9Z2 into BTS 84

,		-	T	able l -	BIH TERI	RESTRIAL	ТАВ	LE 3 - TI AI	RANSFORM ND THE B	ATION BETW	IEEN THE	INDIVI	DUAL TE	RRESTRI	AL SYST	EMS									
	CONTRI	BUTING NETWOR	KS													,									
Name	Set of station Coordinates	Time span	Nb of coloc. sites		of the t paramete	ransfor⊶ ers	NET	WORK	SSC	T1 cm	Т2 .ст	T3 cm	D 10 ⁸	R1 0.001"	R2 0.001"	R3									
			, Dates	Centre	Scale	Orient.			والمراجع والمراجع والمراجع والمراجع	في بيانيات وليافيا في الماليات			ful idat una a		babalteri natione tadi										
		1000 1000		6	6	6	RN	SSC(NGS	8) 83 R (1 165.2	-94.9	47.1	-4.4	- 5₀2	8.0	⊷5。									
RN RJ	SSC(NGS) 83 R 01 SSC(JPL) 83 R 05	1980⊶1984 1971⊶1983	11	free free	free free	free free	RJ	SSC(JPL	/) 83 R (5 10.1	36.8	-15.1	2.8	∽8 ₀5	5.0	-7.									
							MJ	SSC(JPL) 84 M O	0.0	0.0	0.0	∽4 ₀8	2.1	3.3	-8.									
		,			fixed free f		LC	SSC(CSR) 84 L O	1 0.0	0.0	0.0	0.0	⊷ 5.9	-2.6	3.8									
MJ	SSC(JPL) 84 M 01	1970-1984	2	fixed		free free	free	free	free	free	free	free	d free	ed free	free	free	DM	SSC(DMA)77 D O	1 10.6	⊷ 69.7	~490.1	60.4	1.2	4.7
LC	SSC(CSR) 84 L 01	1976~1984	27	fixed	fixed	free																			
DM	SSC(DMA) 77 D 01	1975-1984	34	free	free	free	The	above par	rameters	are to be	used wi	ith equa	tion (1), p. A	-3.										
					I	•																			

A : optical astrometry
D : satellite Doppler tracking
L : satellite laser ranging
M : Lunar Laser Ranging
R : Radio Interferometry (CERI, VLBI)


This figure illustrates the key entries in the BIH 84 report



Know the Earth... Show the Way... Understand the World

Selected offsets among prime meridians from the "Space Age" and the Airy Transit Circle.

The yellow circle provides a reference for each documented offset

Other 'Conjectured' reasons

X TRANSIT did it

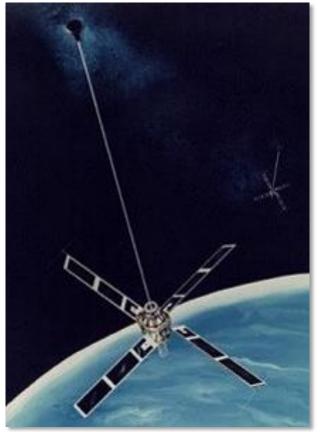
- **X** Errors crept into the BIH process
- K Greenwich functions moved to Herstmonceux in 1957
- X Polar Motion
- **X** Crustal motion (Plate Tectonics)
- Improvements in the fundamental celestial reference frame

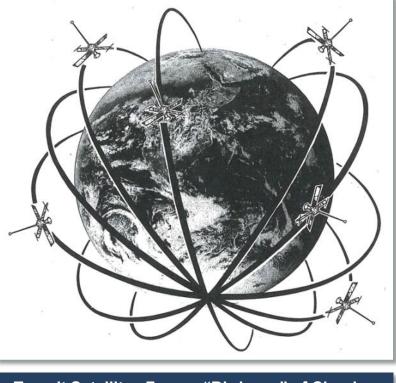
X GPS did it

For an in-depth, peer-reviewed explanation see:

Why the Greenwich meridian moved by: Stephen Malys¹, John H. Seago², Nikolaos K. Pavlis¹, P. Kenneth Seidelmann³ & George H. Kaplan⁴. Journal of Geodesy

http://link.springer.com/article/10.1007/s00190-015-0844-y


¹ National Geospatial-Intelligence Agency, Springfield, VA
² Analytical Graphics, Inc., Exton, PA,
³ University of Virginia, Charlottesville, VA
⁴ United States Naval Observatory, Washington DC



Know the Earth... Show the Way... Understand the World nga.mil | @nga_geoint | facebook.com/natlgeointagency

Navy Navigation Satellite System a.k.a. TRANSIT

Transit Satellites Form a "Birdcage" of Circular, Polar Orbits About 1075 km Above the Earth

Ref: The TRANSIT Navigation Satellite System, Thomas A. Stansell, Status, Theory, Performance, Applications, The Magnavox Government and Industrial Electronics Company, June, 1983

Early US Global Geocentric Earth Models

Need for these was driven by 'Long Range Missiles' & Defense-Related Satellites Most of these were 'Classified' at the time and only declassified in1993

Name	Acronym	Methods	a (meters)	f
US Air Force 1958	USAF1958*	Gravimetric	6378270	1/297
US Air Force 1959	USAF1959	Gravimetric + f from Satellite Vangaurd1958β	6378185 +/- 50	1/298.3 +/- 0.1
US Army 1959	USA1959	Gravimetric + f from Satellite Vangaurd1958β	6378147 +/- 8	1/298.25
World Geodetic System 1960	WGS 60	Combination of earlier results	6378165	1/293
World Geodetic System 1966	WGS 66**	Gravimetric + TRANSIT, BE-B, BE-C, ANNA 1B, GEOS-A	6378145 +/- 20	1/298.25 +/- 2.2 X 10 ⁻⁷
World Geodetic System 1972	WGS 72	'Unified'	6378135 +/- 5	1/298.26 +/- 0.6 X 10 ⁻⁷

*a.k.a. USAF WGS 58, ** a.k.a. DoD WGS 66 and builds upon NWL-5, 5K, NWL-8, 8B, 8D, APL