GNSS calibrations for UTC Evolution of BIPM Circular T Rapid UTC, an update GLONASS Time and UTC, an update

METP

G. Petit & F. Arias BIPM Time Department

> 10th ICG Meeting 1-6 November 2015

Part I: GNSS calibrations for UTC

Goals

- Maintain the calibration of the time transfer facilities in laboratories contributing to UTC.
 - Including new calibrations for the many uncalibrated systems or updating outdated values
- Use the calibration trips contributed by RMOs and individual laboratories in a consistent and optimal manner.
- Optimize the set of u_B uncertainties for UTC.
- Maintain Guidelines: a document that covers all aspects of GNSS equipment calibration.
- Maintain a web page with access to all information on calibrations for UTC

Calibrations web page

http://www.bipm.org/jsp/en/TimeCalibrations.jsp

Burnou

On line 09/04/2015

www.bipm.org

Intended to host all reports of UTC calibrations

	Internatio Poids e Mesu	nal des - the intergov on matters res	Search facility:				
ations	ABOUT US	PUBLICATIONS	MEETINGS				
	> You are here: 8	DM work programme > time >	calibrations of time transfer equipment				
ations	Introduction	Documentation Current	files Archive			Provision technical se per Member	of BIPM rvices r State
	The 8 Calibration cases, by reports for	IPM Time Department mains may be carried out by other entities such as min r all techniques contribution	nages the calibration of time tran the BIPM, by the RMOs, by indi anufacturers. These pages give a bg to UTC.	ifer systems used to gene vidual time laboratories or ccess to the calibration re	rate UTC. , in some esults and	Chemistry III Electricity IIII I Ionizing Rad Mass IIII Time IIII	a lation DBa
	Starting 2 information	2015, calibrations in lab n please click on the Docu	oratories contributing to UTC for mentation tab above.	llow specific guidelines.	For more	≥ Related a	articles
	Current c identifier (report cali	alibration results (availab (Cal_ID) to enable the pr bration information in Sect	le via the "Current files" tab ab- rocess yielding the results to be tion 6 of Circular T; an example is g	vve) are labelled with a c traced. The Cal_ID will be iven here.	calibration e used to	 Time scales BIPM calibrat measurement s Comparisons 	ion and rervices
	The calibr	ation identifiers are of the	form znnn-YYYYY where			the BIPM	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	• z ide • nnn • YYY	entifies the type of calibra is a number assigned by t Y indicates the year (typi	tion; he BIPM; cally the start of the calibration ex	ercise).			
	The types	of calibration are:					
	2 == call z = ther year call num	0: For TWSTFT links, what pration identification of the 1: For GNSS systems, with 1 identifies a report corres 7. 2: For GNSS systems, cali pration, or transfer using a ber within the year.	tever the technique used for the li e ITU format. h GNSS calibration campaigns under ponding to a calibration trip and is brated with other techniques (e.g. calibrated link); nnn then identifie	nk calibration. nnn then is ir the supervision of the BIJ a sequential number within manufacturer calibration, is a report and is a sequen	the PM; nnn n the absolute tial		
	Calibration report is a the "Archi	is made before 2014 have vailable. The history of c ve" tab above.	been included in the current sche albrations until 2014 can also be	me by assigning a Cal_ID w accessed in its original for	nhen a full m through		

Principles

- Two groups of laboratories
 - Group 1: Calibration trips regularly carried out by the BIPM
 - Group 2: Other laboratories. Calibration trips for group 2 are performed under responsibility of the RMOs.
 - Group 1 laboratories are proposed by the RMOs. Typically < 10 such labs. List may evolve with time.

- The BIPM will maintain an open database with all calibration results.
 - Each calibration report will be identified by a unique calibration identifier Cal_Id to be used as a reference for the calibration info (e.g. in CGGTTS header)
- u_{CAL} calibration uncertainties for UTC links are set by the BIPM

Guidelines

- « BIPM Guidelines for GNSS calibrations » v3.0 distributed in April 2015.
 - Minor update in v3.1 in September 2015
- Practical calibration procedures covering: operations; computation; report of results. (see Guidelines document)
 - Annex 1- Operational procedures for a visit of the traveling equipment
 - Annex 2- Procedure for computing the difference of GPS C/A code measurements (to be finalized)
 - Annex 3- Procedure for computing raw difference of GPS code measurements for geodetic receiver
 - Annex 4- Template for the calibration report to the BIPM

Status of Group 1 calibrations

EURAMET		ΑΡΜΡ			SIM	COOMET		
B3TS/GPS/Equip/Link		B3TS/GPS/Equip/Link		B3TS/GPS	/Equip/Link	TTS-4/GPS/Equip		
РТВ	Concluded	NICT	Concluded	NIST	Concluded	SU	Measurements completed	
ОР	Concluded	NIM	Concluded	USNO	Concluded			
ROA	Concluded	TL	Concluded					
Phase 1 - March-April 2013: BIPM-OP-BIPM								
Phase 2 - April 2013-Sept. 2014: BIPM-PTB-BIPM-TL-BIPM-NMIJ-NICT-BIPM-NIM-BIPM-PTB-ROA-BIPM								

Phase 3 - Nov. 2014-Nov. 2015: BIPM-SU-BIPM (also includes absolute calibration at SU)

Phase 4 - Jan. 2015-June 2015: BIPM-NIST-USNO-BIPM-OP-PTB-BIPM

- Results of initial BIPM G1 have been published in July 2015.
- Values implemented in (not all) receivers in September 2015
- New (lower) uncertainties in September 2015 Circular T

Next actions (1): Implementation for Circular T

- More info will be given in Section 6 of Circular T (see next slides)
- New method for computing calibration uncertainty (1-sigma values)
 UCAL(A-B)(t0) = (UCAL0² [+ ΔUALIGN(A/B)² + ΔUCAL(A/B)²])^{1/2}
 - For Group 1: UCALO as estimated in the analysis report (typically 1.7 ns)
 - For Group 2: U_{CAL0} is a default value (2.5 ns)
 - Optional values ΔU_{CAL} for poor behavior during calibration trip and ΔU_{ALIGN} for alignment of a new receiver to a calibrated one;
- Aging: Calibration uncertainty increases for t > t0

Next actions (2): Continuation of trips

- Group 1 SU calibration to be finalized.
- Group 2 trips can start right away.
- BIPM goal to repeat visits to G1 laboratories typically every 2 years
 - Strategy for G1 trips to be designed
 - Corresponding strategy for update of G1 results

Part II: Evolution of BIPM Circular T

- Changes to be introduced in January 2016
- Section 2 (TAI TA(k)) on web only
- Section 5 (UTC-GNSS times) modified (and will become Section 4)
- New calibration information in Section 6 (will become Section 5)
- Explanatory Supplement of BIPM *Circular T* will be available on the ftp server of the Time Department

CIRCULAR T 333 ISSN 1143-1393 2015 OCTOBER 12, 13h UTC BUREAU INTERNATIONAL DES POIDS ET MESURES ORGANISATION INTERGOUVERNEMENTALE DE LA CONVENTION DU METRE PAVILLON DE BRETEUIL F-92312 SEVRES CEDEX TEL. +33 1 45 07 70 70 FAX. +33 1 45 34 20 21 tai@bipm.org Coordinated Universal Time UTC and its local realizations UTC(k). Computed values of [UTC-UTC(k)] and uncertainties valid for the period of this Circular. From 2015 July 1. Oh UTC, TAI-UTC = 36 s. Date 2015 Oh UTC SEP 9 **SEP 19** SEP 24 **SEP 29** AUG 30 SEP 4 SEP 14 Uncertainty/ns Notes 57289 MJD 57264 57269 57274 57279 57284 57294 U. u [UTC-UTC(k)]/ns Laboratory k ADS (Borowiec) -0.3 -1.0 -1.5 -1.8 -1.5 0.4 1.1 -4.8 -2.6 -1.1 2.8 4.3 4.8 4.1 0.3 APL (Laurel) 4.9 -675.5 -647.2 -633.5 -597.8 -581.3 -558.3AUS (Sydney) -614.1 0.3 5.1 BEV (Wien) -8.4 -18.0 -28.6 -22.2 -11.3 -1.8 0.3 3.1 0.8 BIM (Sofiya) 2693.2 2725.9 2765.9 2780.0 2784.9 2821.8 2847.7 0 7 2 -104.8 -97.6 -118.2-117.7-119.1-134.7BIRM (Beijing) 4.2 3.7 5.8 4.5 8.1 BY (Minsk) 4.3 8.1 7.2 -7595.2 -7696.5 -7797.3 -7898.8 -7988.6 -8084.2-8188.0 CAD (Cagliari) 10.7 10.8 12.1 12.3 14.0 12.5 11.3 (Bern-Wabern) 6.8 0.3 1.3 -1.9-1.4CNM (Queretaro) -2.7 -1.10.3 -1.0-1.8

- Section 2 will be eliminated from Circular T
- Values of [TAI-TA(k)] will continue to be computed and published on the ftp server of the Time Department

(http://www.bipm.org/en/bipm-services/timescales/time-ftp/publication.html).

Date	2015 Oh UTC	AUG 30 57264	SEP 4	SEP 9	SEP 14 57279	SEP 19 57284	SEP 24	SEP 29	
Labor	atory k	57204	57207	37214	[TAI - TA(k)]	/ns	57207	37234	
CH	(Bern-Wabern)	19294.3	19235.3	19177.7	19120.0	19063.1	19008.0	18952.7	
CNM	(Queretaro)	-1195.9	-1224.5	-1233.2	-1243.2	-1204.5	-1180.0	-1186.8	
F	(Paris)	167618.3	167619.9	167617.7	167617.7	167618.0	167618.8	167617.4	
JATC	(Lintong)	-58181.0	-58203.0	-58224.6	-58246.3	-58267.8	-58291.1	-58313.5	
KRIS	(Dae jeon)	46487.5	46503.3	46519.5	46535.5	46552.0	46569.6	46587.0	
NICT	(Tokyo)	1423.4	1428.9	1434.2	1438.4	1444.8	1447.4	1452.3	
NIST	(Boulder)	-45421745.1	-45421929.7	-45422114.0	-45422298.0	-45422481.9	+45422665.6	-45422849.4	
NRC	(Ottawa)	20985.8	20957.3	20936.1	20913.3	20894.3	20882.9	20866.3	
NTSC	(Lintong)	21772.8	21810.3	21848.1	21885.0	21922.4	21959.0	21995.8	
ONRJ	(Rio de Janeiro)	-23118.3	-23153.7	-23188.3	-23223.9	-23259.7	-23295.6	-23329.8	
PL	(Warszawa)	-7194.5	-7203.9	-7212.1	-7222.2	-7235.3	-7238.5	-7243.1	
PTB	(Braunschweig)	2004.5	2004.4	2004.9	2005.0	2004.8	2005.0	2004.8	
SG	(Singapore)	20962.6	21034.2	21095.4	21167.3	21230.5	21302.8	21363.7	
SU	(Moskva)	27291047.1	27291046.3	27291046.8	27291047.6	27291046.7	27291047.1	27291048.2	(1)
TL	(Chung-L1)	-12.7	-6.8	-4.1	0.9	6.4	11.8	14.4	
USNO	(Washington DC)	-35176900.9	-35177187.4	-35177475.1	-35177762.8	-35178051.3	-35178338.8	-35178626.5	

2 . International Atomic Time TAI and Local atomic time scales TA(k). Computed values of [TAI-TA(k)].

Note on section 2:

SU : Listed values are TAI-TA(SU) - 2.80 seconds.

Section 5 (future section 4) on [UTC-GNSS times]

- New section 4 will provide only the values for the relations of UTC and TAI with predictions of UTC(k) disseminated by GNSS (as decided at the 20th Meeting of the CCTF).
- The relations of UTC and TAI with the GNSS System Times will be calculated and published on the ftp server of the Time Department.

5 - Relations of UTC and TAI with predictions of UTC(k) disseminated by GNSS and their System Times.

 $\begin{bmatrix} UTC-GPS \ time \end{bmatrix} = -17 \ s + C_0 \ , \ \begin{bmatrix} TAI-GPS \ time \end{bmatrix} = 19 \ s + C_0 \ , \ global \ uncertainty \ is \ of \ the \ order \ of \ 10 \ ns. \\ \begin{bmatrix} UTC-UTC(USNO)_GPS \end{bmatrix} = C_0^{\circ} \ , \ \begin{bmatrix} TAI-UTC(USNO)_GPS \end{bmatrix} = 36 \ s + C_0^{\circ} \ , \ global \ uncertainty \ is \ of \ the \ order \ of \ 10 \ ns. \\ \begin{bmatrix} UTC-GLONASS \ time \end{bmatrix} = C_1^{\circ} \ , \ \begin{bmatrix} TAI-UTC(USNO)_GPS \end{bmatrix} = 36 \ s + C_0^{\circ} \ , \ global \ uncertainty \ is \ of \ the \ order \ of \ 10 \ ns. \\ \begin{bmatrix} UTC-GLONASS \ time \end{bmatrix} = C_1^{\circ} \ , \ \begin{bmatrix} TAI-UTC(USNO)_GPS \end{bmatrix} = 36 \ s + C_1^{\circ} \ , \ global \ uncertainty \ is \ of \ the \ order \ of \ hundreds \ ns. \\ \begin{bmatrix} UTC-UTC(SU)_GLONASS \end{bmatrix} = C_1^{\circ} \ , \ \begin{bmatrix} TAI-UTC(SU)_GLONASS \ time \end{bmatrix} = 36 \ s + C_1^{\circ} \ , \ global \ uncertainty \ is \ of \ the \ order \ of \ hundreds \ ns. \\ C_1^{\circ} \ , \ \begin{bmatrix} TAI-UTC(SU)_GLONASS \ time \end{bmatrix} = 36 \ s + C_1^{\circ} \ , \ global \ uncertainty \ is \ of \ the \ order \ of \ hundreds \ ns. \\ C_1^{\circ} \ , \ \begin{bmatrix} TAI-UTC(SU)_GLONASS \ time \end{bmatrix} = 36 \ s + C_1^{\circ} \ , \ global \ uncertainty \ is \ of \ the \ order \ of \ hundreds \ ns. \\ C_1^{\circ} \ , \ \begin{bmatrix} TAI-UTC(SU)_GLONASS \ time \ ds \ s \ c_1^{\circ} \ , \ global \ uncertainty \ is \ of \ the \ order \ of \ hundreds \ ns. \\ \end{bmatrix}$

 $[UTC(USNO)_GPS]$ and $[UTC(SU)_GLONASS]$ are, respectively. UTC(USNO) and UTC(SU) as predicted by USNO and SU and disseminated by GPS and GLONASS. The C_g and C_g' values provide realizations of GPS time and of the prediction of UTC(USNO) broadcast by GPS, as obtained using the values $[UTC\cdot UTC(OP)]$ and the GPS data taken at the Paris Observatory, corrected for IGS precise orbits, clocks and ionosphere maps. The C_1 and C_2' values provide realizations of GLONASS time and of the prediction of UTC(SU) broadcast by GLONASS, as obtained using the values $[UTC \cdot UTC(AOS)]$ and the GLONASS data taken at the Astrogeodynamical Observatory Borowiec (AOS). N_g , N_g' , N_1 and N_1' are the numbers of measurements; when N_0 , N_0' , N_1 or N_1' is 0, the corresponding values in the table are interpolated. The standard deviations σ_0 , σ_0' , σ_1 and σ_1' characterize the dispersion of individual measurements. The actual uncertainty of users' access to GPS and GLONASS times may differ from these values. For this edition of circular, $\sigma_0 = 0.9$ ns, $\sigma_0' = 1.1$ ns, $\sigma_1 = 6.7$ ns, $\sigma_1' = 6.7$ ns

2015	Oh	UTC	MJD	C _o /ns	No	C ₀ "/ns	N ₀ *	C ₁ /ns	N_1	C1'/ns	N. *
	AUG	30	57264	-0.1	89	-2.2	79	213.7	89	218.9	89
	AUG	31	57265	-0.6	89	1.0	89	216.9	79	219.0	78
	SEP	1	57266	-0.5	89	-1.0	89	217.6	88	218.7	88
	SEP	2	57267	-1.4	78	-0.6	78	218.7	89	217.3	89
	SEP	3	57268	-1.4	89	0.7	89	219.5	82	215.7	82
	SEP	4	57269	-1.0	89	-1.8	89	221 1	87	217.7	86
	SEP	5	57270	-0.8	89	-0.7	88	221.9	81	219.8	80
	SEP	6	57271	-0.9	90	0.7	90	223.0	90	219.6	90
	SEP	ž	57272	0.1	89	0.8	89	224 0	89	219.4	89
	SEP	â	57273	1 3	89	1.8	89	221 0	87	216 8	86
	SEP	ğ	57274	3.1	89	1.1	89	220.8	88	215.7	88
	SEP	10	57275	4.1	90	1.6	90	223.0	88	216.0	88

Section 6 (future section 5)

- New section 5 will provide more detailed information on the equipment used.
- The calibration uncertainties will be more reliable. Traceability to the original information will be provided as much as possible.

6 - Time links used for the computation of TAI and their uncertainties.

The time links used in the elaboration of this *Circular T* are listed in this section. The technique for the link is indicated as follows:

GPS SC for GPS all-in-view single-channel C/A data; GPS MC for GPS all-in-view multi-channel C/A data; GPS P3 for GPS all-in-view multi-channel dual-frequency P code data; GPS PPP for GPS Precise Point Positioning technique; GPS GT for 'GPS time' observations; GLN MC for GLONASS common-view multi-channel C/A data; GPSGLN for the combination of GPS MC and GLN MC links; TWGPPP/TWGPP3 for the combined smoothing of TWSTFT and GPS PPP/GPS P3; INT LK for internal cable link and TWSTFT for two-way satellite time and frequency transfer data.

For each link, the following uncertainties are provided: u_k is the standard uncertainty accounting for measurement noise and random effects with typical duration between 1 day and 30 days. u_k is the estimated uncertainty of the calibration.

The calibration type of the link is indicated as: GPS EC for GPS equipment calibration; TW EC for two-way equipment calibration; LC (technique) for a link calibrated using 'technique'; BC (technique) for a link calibrated using 'technique' to transfer a past equipment calibration through a discontinuity of link operation. DIC is used for direct internal calibration.

The calibration dates indicate: the most recent calibration results for the two laboratories in the case of EC and the most recent calibration of the link in the case of LC and BC. NA stands for not available. In this case estimated values are provided.

Link	Type	u _k /ns	u _s /ns	Calibration Type	Calibration Date:
AOS /PTB APL /PTB AUS /PTB BEV /PTB BIM /PTB BIRM/PTB BY /PTB CAO /PTB CH /PTB CNM /PTB	GPSPPP GPSPPP GPSPPP GPSPPP GPS MC GPS MC GPS MC TWGPPP GPS MC	0.3 0.3 0.3 1.5 1.5 8.0 3.0	5.0 5.0 3.0 7.0 7.0 7.0 1.0 5.0	LC(GPS P3) LC(GPS MC) GPS EC/GPS EC BC(GPS MC) GPS EC/GPS EC GPS EC/GPS EC GPS EC/GPS EC GPS EC/GPS EC LC(TWSTFT)/BC(GPS PPP) BC(GPS SC)	2011 Jun 2012 Sep 2010 Oct/2015 Jun 2012 Mar 2007 Nov/2006 Sep 2008 Jun/2006 Sep 2008 Jun/2006 Sep 2008 Sep/2009 Aug 2008 May 2008 May

Section 6 of BIPM Circular T (present)

6 - Time links used for the computation of TAI and their uncertainties.

Link	Туре	uA/ns	uB/ns	Calibration Type	Calibration Dates
AOS /PTB	GPSPPP	0.3	5.0	LC (GPS P3)	2011 Jun
APL /PTB	GPSPPP	0.3	5.0	LC (GPS MC)	2012 Sep
AUS /PTB	GPSPPP	0.3	5.0	GPS EC/GPS EC	2010 Oct/2004 Aug
BEV /PTB	GPSPPP	0.3	3.0	BC (GPS MC)	2012 Mar
BIM /PTB	GPS MC	1.5	7.0	GPS EC/GPS EC	2007 Nov/2006 Sep
BIRM/PTB	GPS MC	1.5	20.0	NA /GPS EC	NA /2006 Sep
BY /PTB	GPS MC	1.5	7.0	GPS EC/GPS EC	2008 Jun/2006 Sep
CAO /PTB	GPS MC	8.0	7.0	CDS RC/CDS RC	2004 Nov/2006 Sep
CH /PTB	TWGPPP	0.3	1.0	LC (TWSTFT) /BC (GPS PPP)	2008 Sep/2009 Aug
CNM /PTB	GPS MC	3.0	5.0	BC (GPS SC)	2008 May
CNMP/PTB	GPS MC	3.5	5.0	GPS EC/GPS EC	2004 May/2006 Sep
DFNT/PTB	GPS MC	1.5	20.0	NA /GPS EC	NA /2006 Sep
DLR /PTB	NA				_
DMDM/PTB	GPSPPP	0.3	7.0	LC (GPS MC)	2012 Jul
DTAG/PTB	GPSPPP	0.3	10.0	LC (GPS MC)	2009 Jul
EIM /PTB	GPS MC	7.5	5.0	GPS EC/GPS EC	2007 May/2003 Aug
ESTC/PTB	GPSPPP	0.3	5.0	GPS EC/GPS EC	2012 Nov/2004 Aug
HKO /PTB	GPSPPP	0.3	5.0	LC (GPS MC)	2013 Apr
IFAG/PTB	GPSPPP	0.3	5.0	GPS EC/GPS EC	2003 Jun/2004 Aug
IGNA/PTB	NA				_

 u_A , u_B do not have a clear meaning, in particular u_B

Time transfer equipment is NOT identified

Calibration Types are unclear, no reference to calibrations

Tracing calibrations and alignements very difficult

New Section 5 of BIPM Circular T (Starting January 2016)

u _{stb} replaces u _A							
(characterizes the							
stability of the link)							
	Link	туре	Equipment	Cal_ID1/Cal_ID2	uStb/ns	uCal/ns uAg/ns	Al/ns YYMM
	AOS /PTB	GPSPPP	AO_4 /PT02	1005-2008/1001-2014	0.3	5.8 3	
u _{CAL} replaces u _B	APL /PTB	GPSPPP	AP /PT02	NA_A1 /1005-2014	0.3	11.2 10	109.4 1402
(represents the	AUS /PTB	GPSPPP	AU01 /PT02	1002-2010/1001-2014	0.3	5.4 2	
colibration	BEV /PTB	GPSPPP	BE1_ /PT02	NA_A1 /1005-2014	0.3	4.2 3	-3.2 1203
calibration	BIM /PTB	GPS MC	BM37 /PT05	2004-2008/1005-2008	1.5	8.6 5	
uncertainty)	BIRM/PTB	GPS MC	BIO1 /PTO5	NC_A1 /1005-2008	1.5	20.0	-30.0 0709
	BI /PTB	GPS MC	BY/PT05	NA_A1 /1005-2008	1.5	8.6 5	53.0 0804
Time transfer	CAO /PTB	GPS MC	CA/PT05	NC /1005-2008	8.0	20.0	07 2 0004
	CNM / FTB	GPS NC	CN00 / PT05	1002-2004/1005-2008	3.0	14.1 10	-27.3 0804
equipment is	DENT / DED	CDSDDD	PAP / P105	Nº N1 /1005-2014	0.3	20.0	10 3 1507
identified	TMTM/DTR	GPSPPP	2M68 /PT02	NA A1 /1005-2014	0.3	6.5 4	-15.0 1303
	DTAG/PTB	GPSPPP	DT01 /PT02	NA /1001-2014	0.3	7.6 3	1010 1000
	EIM /PTB	GPS MC	EI /PTOS	1011-2007/1005-2008	7.5	7.8 6	
Cal IDs allow to	ESTC/PTB	GPSPPP	ES03 /PT02	1012-2012/1001-2014	0.3	5.2 1	
access reports of	HKO /PTB	GPSPPP	HKO1 /PT02	NA A1 /1001-2014	0.3	7.1 1	+15.9 1304
	IFAG/PTB	GPSPPP	IF13 /PT02	1011-2011/1001-2014	0.3	5.4 2	
calibration or	IGNA/PTB	NL					
certificates	IMBH/PTB	GPSPPP	BH01 /PT02	NA_A1 /1005-2014	0.3	7.0 0	31.6 1505
	Link	Type	Equipment	Cal_ID	uStb/ns	uCal/ns uAg/ns	Al/ns YYMM
Additional info on	00 /000	-	0000 (DED001	0011-0011	0.0	1.4.1	
alignments	VR /PTB	100222	TR02 /PTB01	0274-2014	0.3	1.0 0	
angriments,	AA / KAD	TRACEDED	NYCTO1 /DTRO1	0214-2011	0.3	5 1 1	
transfer of	OP /PTR	THOPPP	OP01 /PTR01	0377-2014	0.3	1.0 0	
calibration etc	ROA /PTR	TWOPPP	ROA01 /PTR01	0380-2014	0.3	1.0 0	
cambration, etc.	SP /PTB	TWGPPP	SP01 /PTB01	0381-2014	0.3	1.0 0	
	USNO/PTB	TWGPPP	USNO01/PTB01	0391-2014	0.3	1.0 0	
Link to	VSL /PTB	TWGPPP	VSL01 /PTB01	0220-2011	0.3	1.4 1	
web/database							

from pdf version

Part III: Rapid UTC, an update

- UTCr official BIPM product in July 2013
- Made available every week since that time
- Paper published *Metrologia* 51 33, 2014
- UTCr remains within 1.1 ns RMS from UTC

Rapid UTC project and UTCr

- UTC is not adapted for real and quasi-real time applications.
 - UTC is calculated with one-month data batches, and available monthly in *BIPM Circular T* under the form of [*UTC-UTC*(*k*)] at five-day intervals;
 - Extrapolation of values over 10 to 45 days based on prediction models is necessary to many applications.
- The Rapid UTC project (UTCr) was presented at the CCTF(2012)
- UTCr declared an official product in July 2013 (week 1336)
- Impact of UTCr
 - on UTC contributing laboratories: More frequent assessing of the UTC(K) steering, and consequently better stability and accuracy of [UTC(k)]; Enhanced traceability to UTC.
 - on users of UTC(K): Access to a better "local" reference, and indirectly, better traceability to the UTC "global" reference;
 - on GNSS: Better synchronization of GNSS times to UTC, through improved UTC and UTC(k) predictions.

Bureau

Every Wednesday before 18:00 UTC on <u>ftp://tai.bipm.org/UTCr/Results/</u> and on the regular Time Dpt ftp server.

Also ASCII files with UTCr-UTC(k)

Results of the official UTCr product since July 2013;

Back results of the pilot experiment stage in subdirectory Results/pilot_experiment;

2013 NOVEMBER 06, 12h UTC											
BUREAU INTERNATIONAL DES POIDS ET MESURES ORGANISATION INTERGOUVERNEMENTALE DE LA CONVENTION DU METRE PAVILLON DE BRETEUIL F-92312 SEVRES CEDEX TEL. +33 1 45 07 70 70 tai@bipm.org											
Computed values of [UTCr-UTC(k)]											
Date	2013 Oh UTC	OCT 28	OCT 29	OCT 30	OCT 31	NOV 1	NOV 2	NOV 3			
	MJD	56593	56594	56595	56596	56597	56598	56599			
Labor	atory k			[1	JTCr-UTC ()	<)]/ns					
AOS	(Borowiec)	0.3	0.6	0.1	-0.3	-0.4	-1.2	-1.0			
BEV	(Wien)	-36.1	-37.0	-31.8	-25.5	-26.1	-20.5	-20.9			
CH	(Bern-Wabern)	-3.7	-6.4	-7.6	-8.3	-8.2	-9.1	-9.5			
CNM	(Queretaro)	-5.4	-6.4	-5.0	-5.8	-5.3	-5.9	-6.6			
CNMP	(Panama)	0.0	-1.6	-8.5	-13.2	-23.9	-17.1	-25.4			
DMDM	(Belgrade)	-13.1	-16.6	-17.5	-22.3	-30.5	-31.0	-29.4			
DTAG	(Frankfurt/M)	240.8	240.5	239.0	239.9	238.4	235.1	233.7			
IFAG	(Wettzell)	-863.1	-863.1	-865.7	-871.3	-875.1	-876.9	-875.4			
IGNA	(Buenos Aires)	4621.9	4637.8	4654.7	4669.3	4686.0	4705.1	4724.0			
INTI	(Buenos Aires)	62.2	61.0	61.3	60.7	67.8	75.9	73.1			
IT	(Torino)	-8.8	-9.2	-8.9	-9.0	-9.2	-10.3	-10.0			
KRIS	(Daejeon)	-16.0	-16.3	-15.8	-15.7	-15.3	-15.7	-15.0			
LT	(Vilnius)	410.7	402.9	393.9	396.9	391.9	389.0	382.2			
MSL	(Lower Hutt)	782.4	781.8	791.7	802.6	813.9	828.0	842.6			
NAO	(Mizusawa)	-20.3	-23.1	-23.2	-20.5	-23.4	-23.8	-25.4			
NICT	(Tokyo)	10.9	10.6	10.4	10.2	10.0	8.9	8.3			
NIM	(Beijing)	-7.8	-7.7	-7.8	-9.1	-8.5	-9.7	-9.9			
NIMT	(Pathumthani)	0.1	1.8	2.5	-2.1	-2.3	-1.0	0.0			
NIST	(Boulder)	-1.4	-1.9	-2.7	-3.5	-3.5	-4.3	-3.9			
NMIJ	(Tsukuba)	0.6	0.3	0.0	-0.4	-0.3	-1.1	-1.2			
NMLS	(Sepang)	1119.1	1104.1	1084.3	1072.6	1053.4	1037.7	1018.2			
NPLI	(New-Delhi)	-3.7	-3.4	-3.7	-4.2	-4.0	-3.6	-3.3			
NRC	(Ottawa)	-22.6	-19.6	-22.1	-20.6	-26.5	-26.6	-22.8			
NRL	(Washington DC)	-4.6	-4.4	-4.2	-4.1	-3.4	-2.1	-1.1			
NTSC	(Lintong)	-0.1	-0.2	-1.3	0.7	-2.6	-1.9	-3.6			
ONRJ	(Rio de Janeiro)	-11.8	-12.1	-13.0	-13.5	-14.8	-14.3	-15.0			
OP	(Paris)	-3.1	-2.8	-3.1	-3.3	-3.2	-3.6	-3.4			
ORB	(Bruxelles)	-11.4	-10.6	-10.7	-12.9	-12.4	-15.2	-17.3			
PL	(Warszawa)	38.2	38.8	35.7	32.6	29.9	32.5	29.1			
PTB	(Braunschweig)	-6.9	-6.6	-7.1	-7.7	-8.1	-8.7	-8.5			
ROA	(San Fernando)	0.4	0.6	0.2	-1.1	-1.8	-3.2	-4.0			
SCL	(Hong Kong)	33.7	35.6	27.5	34.7	29.3	32.4	28.1			
SG	(Singapore)	-17.2	-17.9	-19.2	-20.6	-19.2	-20.2	-19.4			
SP	(Boras)	-6.4	-5.7	-6.3	-6.9	-7.2	-7.6	-7.5			
SU	(MOSKVA)	-2.0	-1.7	-2.1	-2.4	-2.2	-2.6	-1.9			
TL	(Chung-Li)	-5.6	-6.2	-6.9	-7.4	-7.8	-8.9	-8.1			
UME	(Gebze-Kocael1)	1363.3	1367.5	1369.9	1370.5	1376.8	1380.7	1379.1			
USNO	(Wasnington DC)	-3.4	-3.8	-4.2	-5.0	-5.1	-5.3	-5.5			
VSL	(DeTLC)	-23.0	-22.2	-22.0	-20.5	-18.3	-18.8	-12.9			

UTC remains available from the monthly Circular T at (http://www.bipm.org/jsp/en/TimeFtp.jsp?TypePub=publication).

UTCr 1344

International des Poids et Mesures

Bureau

Comparisons between UTCr and UTC

Not a single way to estimate UTCr-UTC.

We use a weighted average over the laboratories participating to UTCr:

Part IV: GLONASS Time and UTC, an update

- As seen from BIPM Circular T, GLONASS time and UTC(SU)_GLONASS are now in line. Calibration still to be performed.
- Reminder: some changes to be introduced in January 2016 in Circular T section 5 (as mentioned before)

GNSS Timescales

www.bipm.org

[UTC – GLN time] and [UTC - UTC(SU)__{GLN}] from Circular T

www.bipm.org