UN ICG Experts Meeting: GNSS Services Vienna, Austria, 14 – 18 December, 2015

Methods and techniques for improvement of GNSS resilience against jamming-spoofingmeaconing attacks at the open sea

Renato Filjar, <u>SERDJO KOS</u> Faculty of Maritime Studies, University of Rijeka, Croatia

Methods and techniques for improvement of GNSS resilience against jamming-spoofingmeaconing attacks at the open sea

- Introduction and motivation
- Increasing volume of maritime transport emphasises vulnerabilities of GNSS operation at the open sea
- Crew, vessel and goods may be at danger as the result of provision of engineered GNSS signals and navigation data
- . Lack of supporting ICT infrastructure at the open sea
- A process for JSM-resilient GNSS operation at the open sea is proposed as a JSM counter-measure
- Anti-JSM effort as a risk-reduction process

Methods and techniques for improvement of GNSS resilience against jamming-spoofingmeaconing attacks at the open sea

Methods and techniques for improvement of GNSS resilience against jamming-spoofingmeaconing attacks at the open sea

- Full Professor Serdjo Kos, FRIN • Evil intent behind JSM operation
- Potential targets:
- Load (intentionally grounding the vessel and grabbing what remains of her load)
- . Crew (kidnapping for ransom)
- . Vessel (take-over, hijacking)

Methods and techniques for improvement of GNSS resilience against jamming-spoofingmeaconing attacks at the open sea

Full Professor Serdjo Kos, FRIN

- Evil intent behind JSM operation at the open sea risk assessment
- . Grounding less probable
- . Take-over highly probable

Crew kidnapping – moderately to highly probable

Methods and techniques for improvement of GNSS resilience against jamming-spoofingmeaconing attacks at the open sea

- The nature of a JSM attack
- Jamming simple and cheap equipment, not highly sophisticated attack
- Spoofing a highly sophisticated attack, requires targeted education, skills and experience
- Meaconing moderately to highly sophisticated attack, may be conducted by less-experienced personnel equipped with highly sophisticated equipment

Methods and techniques for improvement of GNSS resilience against jamming-spoofingmeaconing attacks at the open sea

- . Developing JSM resilience at the open sea
- . Signatures of JSM in operation
 - Received satellite signal strength at considerably higher levels than usual

- Rapid change of satellite signal strength at the moment of the start of JSM operation
- . Increasing discrepancy with other positioning sensors
- Apparent discrepancy in relative signal power of different GNSS signals (for instance: GPS L1 vs GPS L2)
- Discrepancy between satellite ephemeris and almanac data

Methods and techniques for improvement of GNSS resilience against jamming-spoofingmeaconing attacks at the open sea

- Recommendations for development of JSM resilience at the open sea
- Continuous monitoring of GNSS performance both on vessel's bridge and regionally/globally
- Looking for signatures of JSM operations (manually the crew, or automatically specially designed GNSS receiver)

Methods and techniques for improvement of GNSS resilience against jamming-spoofingmeaconing attacks at the open sea

Full Professor Serdjo Kos, FRIN

GNSS JSM resilience scheme at the open sea

Methods and techniques for improvement of GNSS resilience against jamming-spoofingmeaconing attacks at the open sea

- GNSS JSM resilience scheme at the open sea
- Threats identification risk assessment of reasonably possible threats
- Risk assessment for processes include the assessment of risk to navigation process (what are the effects of GNSS failure for navigation?) and how to overcome them
- GNSS performance and operation, and positioning environment monitoring – sudden and unexplained changes in GNSS receiver readings, spectrum observation – manual or automatic?

Methods and techniques for improvement of GNSS resilience against jamming-spoofingmeaconing attacks at the open sea

Full Professor Serdjo Kos, FRIN

GNSS JSM resilience scheme at the open sea

- Alerts internal (within a vessel) and external (JSM operation report to international monitoring authorities)
- Infrastructure protection cannot be done by vessel's crew – who will act on that?
- Corrective actions temporal suspension of GNSS usage, swithch to alternative positioning resources, informing the authorities
- Restriction or temporal suspension of services AIS and similar services

Methods and techniques for improvement of GNSS resilience against jamming-spoofingmeaconing attacks at the open sea

- Disucssion
- . JMS in operation is identifiable
- Modern state-of-the-art in electronic navigation focuses on system integration -> an officer on bridge cannot easily inspect the performace of a particular positioning sensor
- Additional education required in understanding the GNSS vulnerabilities
- A novel deisgn of GNSS equipment is needed, that allows for easy inspection of GNSS performance, or that comprises advanced algorithms for JMS operation
- Collation of observed GNSS JSM operations on a global scale recommended

Methods and techniques for improvement of GNSS resilience against jamming-spoofing-

meaconing attacks at the open sea

- Conclusion
- . The main causes of vulnerabilities
 - Over-reliance on GNSS
 - System integration in electronic navigation
 - Crew do not develop the required skills and knowledge
- Proposed process for development of JSM-resilient GNSS operation at the open sea
- . Call for international co-operation on combating JSM
- . Call for the crew's additional professional education
- Call for GNSS receiver design with embedded algorithms for GNSS JSM operation assessment
- Future work will concentrate on improvements in GNSS SDR equipment design, and JSM-resilient GNSS operation process development

Methods and techniques for improvement of GNSS resilience against jamming-spoofingmeaconing attacks at the open sea

Full Professor Serdjo Kos, FRIN

Reference

• Borio, D. (2013). Spectral and Spatial Characterization of GNSS Jammers. Proc of 7 th GNSS Vulnerabilities and Solutions Conference. Baška, Krk Island, Croatia.

• Crane, R. (2012). Radio Frequency Interference and Cybersecurity Framework. 8th Annual Baska GNSS Conference. Baska, Krk Island, Croatia. Available on-line at:

http://www.gps.gov/news/2012/05/croatia/, courtesy of the US National Coordination Office for Space-Based Positioning, Navigation and Timing.

 Filjar, R, Brčić, D, and Kos, S. (2014). Jamming-Spoofing-Meaconing-Resilient GNSS Performance at the Open Sea. Proc of 8th Annual Baska GNSS Conference (5 pages). Baska, Krk Island, Croatia

• Filjar, R., D. Huljenić. (2012). The importance of mitigation of GNSS vulnerabilities and risks. Coordinates, 8(5), 14 - 16.

• Grant, A. (2013). Resilient PNT: making way through rough waters. Proc of 7 th GNSS Vulnerabilities and Solutions Conference. Baška, Krk Island, Croatia.

• Kroener, U, and Dimc, F. (2010). Hardenning of civilian GNSS trackers. Proc of 3 rd GNSS Vulnerabilitiesand Solutions Conference (on CD). Baška, Krk Island, Croatia.

• O'Hamlon, B W et al. (2013). Real-Time GPS Spoofing Detection via Correllation of Encrypted Signals. Navigation, 60(\$), 267-278.

• Petrovski, I G, and Tsujii, T. (2012). Digital Satellite Navigation and Geophysics: A Practical Guide withGNSS Signal Simulator and Receiver Laboratory. Cambridge University Press. Cambridge, UK.

Methods and techniques for improvement of GNSS resilience against jamming-spoofingmeaconing attacks at the open sea

Full Professor Serdjo Kos, FRIN

Reference

 Sheridan, K. (2013). GNSS Interference Detection and Characterisation using a Software Receiver – The DETECTOR Project. Proc of 7 th GNSS Vulnerabilities and Solutions Conference. Baška, Krk Island, Croatia.

Sanz Subirana, J, Juan Zornoza, J M, and Hernandez-Pajares, M. (2013). GNSS Data Processing – Vol. I: Fundamentals and Algorithms. European Space Agency. Noordwijk, the Netherlands.

• Thomas et al. (2011). Global Navigation Space Systems: reliance and vulnerabilities. Royal Academy of Engineering.London, UK.

Williams, P, Hargreaves, C, Last, J D, and Ward, N. (2013). eLoran – the route to resilience? Proc of 7 th GNSS Vulnerabilities and Solutions Conference. Baška, Krk Island, Croatia.

Methods and techniques for improvement of GNSS resilience against jamming-spoofingmeaconing attacks at the open sea

Full Professor Serdjo Kos, FRIN

Traceability

This lecture is based on the paper presented at the 8th Annual Baska GNSS Conference (Baska, Krk Island, Croatia), a meeting point for scientists, engineers, strategists, advisors, policy-makers, technology- and business-developers, regulators, end-users and the other interesting parties.

The Annual Baska GNSS Conference addresses the latest developments in:

- GNSS core and advanced PNT,
- development of resilient GNSS (especially against space weather, ionospheric and jamming effects),
- signal processing for GNSS receiver design,
- GNSS alternatives, and

- GNSS PNT navigation and non-navigation applications (incl. intelligent transport systems, GNSS-R, location-based services, space weather and ionospheric monitoring, timing and synchronisation applications, forestry, and agriculture).

Invitation to <u>10th Annual Baska GNSS Conference</u> to be held in <u>Baska, Krk Island, Croatia</u> <u>8 – 10 May, 2016</u>

THANK YOU FOR YOUR ATTENTION !

Full Professor Serdjo Kos, FRIN ember of Council, The Royal Institute of Navigation, London, UK Faculty of Maritime Studies,

University of Rijeka, Groatia

E-mail:skos@pfri.hr