Development of a GNSS-Enhanced
Tsunami Early Warning System
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Vi/nat quUEStIons are asked WnNen tnere IS an eartnguake In :
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Where was the earthquake? Lat/Lon/Depth

How large was it? Accurate Magnitude

Could the earthquake generate a tsunami?
Nature of earthquake — thrust, normal, strike-slip, oblique

Was there a tsunami? DART buoys, other

How much time do communities have before the tsunami
makes landfall? Tsunami energy modeling

How far will the tsunami come onshore?

How deep will the water be?
Subsidence measurements and inundation modeling
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The READI Working Group

- Real-Time Earthquake Analysis for Disaster
mItigation network (READI): ~750 GPS

stations, a NASA driven project Cascadia Subduction .
Zone — Mw 9.0 LSS~

- Super set of GNSS networks maintained by earthquake & tsunami
(sorted according to largest to smallest ~ similar to 2011 Japan
number of stations): events
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GNSS Earthquake and Tsunami Early Warning

Sendai Earthquake (2011-03-11 M 9.0) displacements | ARIA JpL '+] ™ symbol ) label # arrow # error
am : ‘

Data courtesy of the Geospatial

Information Authority of Japan
GSI
GEONET GPS Array

Great East Japan Earthquake and
Tsunami

Maximum GPS displacement
~5 meters

Imagery ©2011 TerraMetrics, Map data ©2011 Geocentre Consulting, ZENRIN, Mapabc - Terms of Use
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GSI|I GEONET GPS Array Earthquake Displacement Pattern
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Real-Time GNSS for 4N
Rapid Earthquake
Magnitude Determination
and Fault Slip
Distribution
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fault location
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GNSS Static Slip Model 157 seconds

« Magnitude estimates from seismic data-only tend to
saturate for large events.

» Regional seismic data are band limited, they cannot  “'|

adequately capture long periods in real-time.

. Create rapid models with the GNSS static
field

. Static = simple and fast
MYGO011 East component

static offset:

Seconds after OT

8l ® {astCMT inversion node
8~ fasiCMT moment release
Direction of slip

36°

2011 Mw 9 Great East Japan
Earthguake

135 140 145
L s .

* GPS/Accelerometer station

Source: Melgar et al., GRL, 2013
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GNSS Earthquake Source Model for a Predefined Fault

Case 2 —Real-time displacements on a fixed fault surface

Prototype running in real-time on a fixed fault surface
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Seismic Data Alone Underestimated the Size of the Earthquake
Fast and Accurate Magnitude Determination Is Essential

OT+ 3 minutes OT+ 13 hours 3\,
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Japan seismic data => Japan seismic data & teleseismic data =>
magnitude => tsunami impact based on magnitude => tsunami impact based on
precomputed database precomputed database
Japanese Meteorological Agency Japanese Meteorological Agency

Source - Ozaki et al, 2011, EPS

07 - November - 2016 11% Meeting of the International Committee on GNSS — Sochi, Russia Dr. Gerald Bawden, NASA HQ




U]
T

A JL 3 ' p p 3 y -+ 1ianl/n 1N
Vi/nat quUEStIons are asked WnNen tnere IS an eartnguake In :

[sunami prone regions?
)

~ )

Where was the earthquake? Lat/Lon/Depth

How large was it? Accurate Magnitude

Could the earthquake generate a tsunami?
Nature of earthquake — thrust, normal, strike-slip, oblique

Was there a tsunami? DART buoys, other

How much time do communities have before the tsunami
makes landfall? Tsunami energy modeling

How far will the tsunami come onshore?

How deep will the water be?
Subsidence measurements and inundation modeling



In open ocean

Currently — DART Buoys are only way to track tsunamis
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The Tsunami Generated Displacement of the Ocean Surface
Couples to the lonosphere
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x altitude j V
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Tsunami

From Artru et al., 2005
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GSI’'s GEONET Captured the lonospheric Coupled Waves and

Imaged the Tsunami Generation and Propagation
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GNSS Earthquake and Tsunami Early Warning

Expanding the earthquake and tsunami early warning globally
requires access to shared real-time GNSS data in areas that are:

 Seismically active
 Coastal communities that may be impacted by a tsunami

Partnership with regional/national tsunami and earthquake early
warning Centers.

« The GNSS Early Warning approach enhances current capabilities

Partnership with the International GNSS and GiQS/II\IGS Rcla(al-
Earth Observation’s communities = e eVl

) e AR
« |ICG — UN International Committee on Global
Navigation Satellite Systems + UNOOSA

* IGS - International GNSS Service

« GGOS - Global Geodetic Observing System
« GEO - Group on Earth Observations :
« CEOS - Committee on Earth Observation Satellites
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Known and Publically Accessible
Continuous GNSS sites — 14,667
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Known and Publically Accessible
Real-Time GNSS sites — 2,287
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Continental and regional GNSS networks
Geophysical Survey Russian Academy of Sciences

America

® NEDA sites (according to IGS catalog)

® Pacific coastal sites (according to recent AN o
pUinShed resea rCh) k / GEOPHYSICAL SURVEY |
07 - November - 2016 11% Meeting of the International Committee on GNSS — Sochi, Russia Dr. Gerald Bawden, NASA HQ




GNSS Earthquake and Tsunami Early Warning

SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION

A real-time GNSS network would support a number of
goals described the Sendai Framework S Framvcr

for Disaster Risk Reduction

2015 - 2030

18. To support the assessment of global progress in achieving the
outcome and goal of the present Framework, seven global targets
have been agreed.

(a) Substantially reduce global disaster mortality by 2030, aiming to lower the
average per 100,000 global mortality rate in the decade 2020-2030 compared to
the period 2005—- 2015;

(f) Substantially enhance international cooperation to developing countries
through adequate and sustainable support to complement their national actions for
Implementation of the present Framework by 2030;

(g) Substantially increase the availability of and access to multi-hazard early
warning systems and disaster risk information and assessments to people by 2030.

@
ld Conft
NS
~ N 2015 Sendai Japen
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GNSS Earthquake and Tsunami Early Warning

SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION

A real-time GNSS network would support a number of
goals described Sendai Framework wo—

2015 - 2030

V. Priorities for action

20. Taking into account the experience gained through the
Implementation of the Hyogo Framework for Action, and in
pursuance of the expected outcome and goal, there is a need for
focused action within and across sectors by States at local, national,
regional and global levels in the following four priority areas:

Priority 1: Understanding disaster risk. < | GNSSCSiegr?tﬁc?Co/%get;riﬁme

Priority 2: Strengthening disaster risk governance to manage disaster risk.
Priority 3: Investing in disaster risk reduction for resilience.

Priority 4: Enhancing disaster preparedness for effective response and to
“Build Back Better” in recovery, rehabilitation and reconstruction.
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Save the date

Real-Time GNSS Tsunami Early Warning Workshop
May 29-31, 2017

-~




Backup Slides
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The Significant Earthquakes Data Base

(https://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1)

-60 -40 -20 _ 20 120 160 180 200 | 240
Energy flux for trans-oceanic mega-tsunamis historically known. Insert figure — distribution of fatalities over the

tsunami propagation time ( up to 85% fatalities occur during the first hour). Calculations are made in ICT SB RAS
by means of MGC numerical package for. fsunami.medeling, (Ghubarov, Baballov, Beisel, 2011), Ref; Gusiakawgt,al,




Tsunami travel times for 2011 Mw 9.0 Tohoku-oki earthquake

yamaoar

Otsuchi /11068
6238 4 Kamaishiztide gauge >4 /0:35

ianalsii Kamaishiswaterheightom

Ofunatos /288 .
¢ Piunator tide gauge >3.2n /0:29
Rikuzen: /Hi68 A Ofanatorrunup height'24n

Ofunato; waterheighto.5m
Kesennumar /505

MinamiiSanriki:
Onagawa: //BY3

Ishinomakit /2770
gashi-Matsushimas

Shichigahamar. /18
Shiogamas. = /5
Tagajo: /27 A
Sendait Ayukawatr tidelgauge >3:3m /0:34

Natorit /41000 i Shichigahamaswaterheight 10m

Iwanumas /141 _ '
Watari: /56 Sendaitwaterheight8m

Ishinomakizwater height 5m
Onagawawaterheight 15m

Yamamoto: SendaiAirportrwater height 12m
Shinchit " Y85
Soma’ A Somattide gauge >7.31 //1:04

Minami Soma: /036

07 - November - 2016 11% Meeting of the International Committee on GNSS — Sochi, Russia Dr. Gerald Bawden, NASA HQ



Dynamic Coastal Inundation Maps
rtGNSS + Tsunami Rise-Up models
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~The 2011 Tohoku-OKi Tsunami
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GNSS Site Installation Costs

Costs to build a PBO-quality station:

UNAVCO

» Deep Drilled-Braced Monument ~$50K/station
Shallow Drilled-Braced Monument ~$25K/station

TYPICAL PBO GPS STATION

Cellular
Antenna
[ =

Solar: / f
Pan/e} gt
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GNSS Site Yearly Costs

. COST PER STATION PER YEAR
Mean Median Min Max number of
stations (n)
All Stations $5.5k $3.9k $13.7k 100
Critical Stations $5.5k $4.0k $13.7k 331
Volcanic Targets $6.7k $4.1k $13.7k 102
Alaska Stations $7.5k $4.9k $13.7k 140
Low Strain Targets $5.2k $5.2k $4.0k $8.4k 260
High Strain Targets $5.5k $5.4k $4.0k $9.8k 628
Stable North America $5.0k $5.0k $3.9k $7.2k 28
newisellitforstirs $5.7k $5.4k $4.0k $13.2k 149

Targets
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GNSS Site Yearly Costs

E - MEAN COST PER STATION (1100 STATIONS)
Mean Cost Per PBO Station Per Year
Field Operations Fixed Costs (Facilities, Storage, Shipping) $255
Sub-Award Data Processing $365
Archiving and Data Operations (staff, servers, software, etc) $899
Realtime Data Handling $305
Field Travel $626
Labor (with fringe) $1,267
Materials/Supplies/Equipment $471
Station Permitting $469
Data Communications $386
Indirect Rate (15.79%) $796

TOTAL $5.8k
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Next Generation of GNSS will Include Accelerometers
Seismogeodetic Earthquake Early Warning at Scripps Institute of Oceanography

20T ToMORt-ORT earthouare
GEONET GPS station 0914 and
K'NEITS?SCEﬁLe;%”%eEEre '\J"I\\/(Iiooi Seismogeodesy detects arrival of
hypocenter seismic P (primary) waves used in
North earthquake early warning to predict
7 S~ . arrival and intensity of more damaging
% ' S (secondary) and surface waves,
£ J1 et better than accelerometers alone for
£ g "’““"’“"\”““‘“”W“W kﬁ Ia_rge earthqua!kes, because of
S a W magnitude saturation of latter (Crowell
Ky Uo ! et al., GRL, 2013)
=2 ST
25 30 -
s P - 0.0 %
g 0.1 ~ £
‘g I=
£ 00 L _
> 1« 05 £
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% —0.1 |1 PWave Lg_
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Time After Earthquake Origin (seconds)

Source: Melgar et al., GRL, 2013
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Seismogeodetic Displacements and Magnitude Estimation

Ground Motion (meters)
| . | . . Seismogeodesy

improves on
traditional seismic
monitoring by
i accurately
%%Ein — determining
" - magnitude of large
A R (>M7)
earthquakes
0.0 - Seismogeodetic Replay — without saturation
o M. B9-5.0 and by estimating
| ' both ground
05 - ‘l, = motions and
/w/\/W\VV permanent
' I ' I ' | ' | ' displacements
50 100 150 200 250

Time Since Start of Earthquake (seconds)

2011 Tohoku-oki earthquake
GEONET GPS station 0914 and K-NET accelerometer MYG003,
155 km from the JMA hypocenter

East

O = N W b~ W
|

Source: Melgar et al., GRL, 2013
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“@5& Components of a Real-Rime GNSS Tsunami Early Warning System

» GNSS sites located in seismogenic region streaming phase and range in
real-time

 Precise Point Positioning (PPP) estimates calculated and accessible in real-
time

» Dynamic change detection algorithms — in real-time

 Earthquake source modeling — in real-time

« Tsunami source modeling — in real-time
— Continued iterations as new GNSS data are available
— Continued iterations as other data become available
« Integration of the rtGNSS derived source mode| S===T=2

Into warning assessment and protocols
— Initial tGNSS solution
— Iterative rtGNSS solutions
« Tsunami run-up modeling
— Including GNSS vertical deformation measurements

lonosphere-tsunami linkage — wave propagation
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