ICAO GNSS RFI Mitigation Plan and associated EUROCONTROL Efforts

Gerhard BERZ
Focal Point Navigation Infrastructure
ATM Directorate, Research & SESAR Division, NAV & CNS Unit

UN ICG Sochi, Russia, 8 November 2016

Overview

This work has been supported by SESAR, Eurocontrol Network Manager and the GSA

- High Level ICAO Provisions
- GNSS RFI Mitigation Plan Overview
 - Principles
 - Regional and Global Support to States
- Summary of Supporting Developments Plans
 - Short, Medium & Long Term Detection Capabilities
 - "Closed Loop GNSS Service Provision"
 - Intervention Capabilities to Locate and Stop RFI Events

State Responsibilities: ICAO ANC/12

Recommendation 6/8 – Planning for mitigation of global navigation satellite system vulnerabilities

That States:

- a) assess the likelihood and effects of global navigation satellite system vulnerabilities in their airspace and apply, as necessary, recognized and available mitigation methods;
- b) provide effective spectrum management and protection of global navigation satellite system (GNSS) frequencies to reduce the likelihood of unintentional interference or degradation of GNSS performance;
- c) report to ICAO cases of harmful interference to global navigation satellite system that may have an impact on international civil aviation operations;
- d) develop and enforce a strong regulatory framework governing the use of global navigation satellite system repeaters, pseudolites, spoofers and jammers;
- e) allow for realization of the full advantages of on-board mitigation techniques, particularly inertial navigation systems; and
- f) where it is determined that terrestrial aids are needed as part of a mitigation strategy, give priority to retention of distance measuring equipment (DME) in support of inertial navigation system (INS)/DME or DME/DME area navigation, and of instrument landing system at selected runways.

ANSP Responsibilities: ICAO GNSS Manual (Doc 9849)

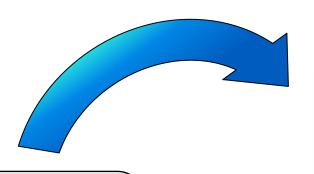
- 5.1.5 State regulators and ANS providers can take the measures described in this chapter to reduce the likelihood that GNSS service will be lost.
- 7.11.3.1 ANS providers must be prepared to act when anomaly reports from aircraft or ground-based units suggest signal interference. If an analysis concludes that interference is present, ANS providers must identify the area affected and issue an appropriate NOTAM.
- 7.12.5 National and international coordination of actions to prevent and mitigate GNSS interference is essential.
- 7.13.1.1 As described in Chapter 5, States can take measures to reduce the likelihood of service outages due to unintentional and intentional signal interference. ANS providers must still, however, complete a risk assessment by determining the residual likelihood of service outages and the impact of an outage on aircraft operations in specific airspace.
- Appendix B, Roles of ANS Providers and Regulators: ANSP to establish
 appropriate strategies to mitigate GNSS outages, Regulator to validate the
 safety aspects of the mitigation strategies.

Introduction to RFI Mitigation Plan

- GNSS RFI Mitigation Plan History & Context
 - Initiated by Spring 2013 Workshop at Eurocontrol Navigation Steering Group Meeting
 - State / ANSP contributions on best practices
 - Guidance developed through ICAO Navigation Systems Panel
 - In response to ICAO 12th Air Navigation Conference Job Card
 - Inclusion in GNSS Manual, ICAO DOC 9849
 - Completed Navigation Systems Panel review, final review and adoption planned for NSP/3 in DEC 2016
 - Strongly supported by Airlines (ICAO Assembly Paper)
- Scope
 - Limited to threats requiring radio frequency propagation
 - Not dealing with corruption of position once it has left receiver

Moving from Vulnerability to Mitigation

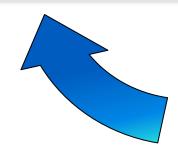
Objective of RFI Mitigation Plan


- Define set of activities for States to ensure that risks to aviation from GNSS RFI are sufficiently mitigated
- Checklists of set of activities to be considered
- Much is already in place, State to decide depending on local environment
- Not intended to impose a significant workload or investment
- To enable reliance on GNSS and associated aviation benefits

Focused on States

- Spectrum a sovereign responsibility
- Regulation and enforcement part of national oversight
- Framework to encourage coordination and exchange of best practices
- Supported by regional and global mechanisms due to system nature

Mitigation Plan Framework

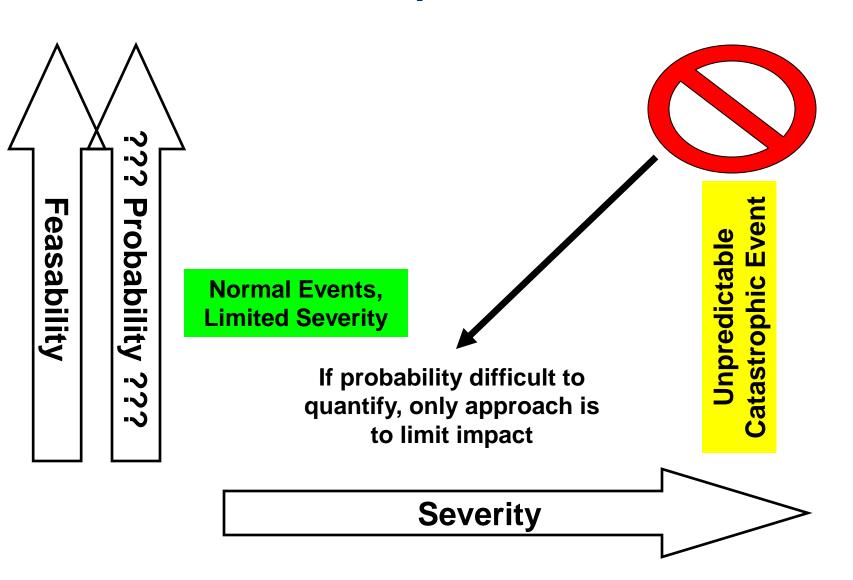


Assess Risks

- Scenario Variation & **Escalation**
- Impact Assessment
- **Identify Existing Barriers**

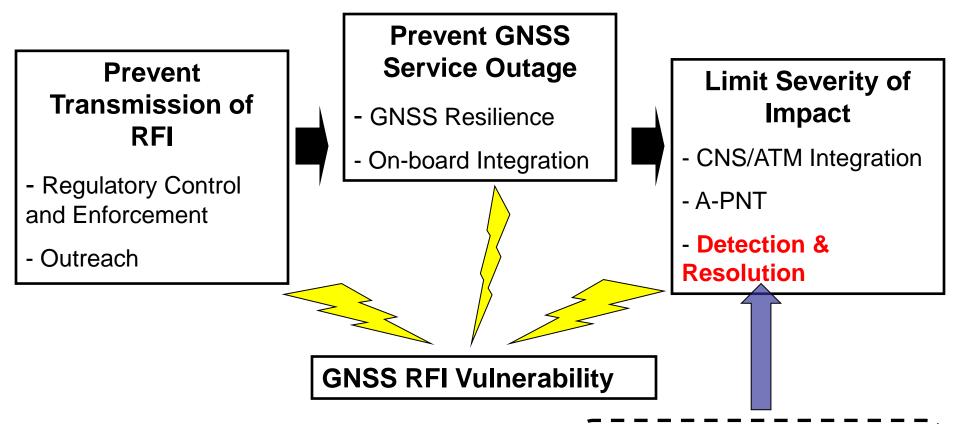
Monitor Threats

- Proactive & Reactive Monitoring
- **Environment Evolution**



Deploy Mitigation Measures

- Reduce Risks to Acceptable Levels
- Integrate in SMS



Risk Trade Space

Implementing Mitigation Barriers

Note: Limiting "success probability" of intentional RFI limits likelihood of events (exposure to detection)

Supported by Threat Monitoring Networks (Preventive & Reactive Role)

Identification of Probable Cause Through Elimination

Due to Constellation / Satellite ?

- CSP Centers (GPS NAVCEN, etc.)
- Augmentation User Support (ESSP, etc.)

If all else can be excluded, must be RFI!

Local Verification & Resolution

Due to Space Weather?

Space Wx Agencies (NOAA, etc.)

Iono Monitoring Networks

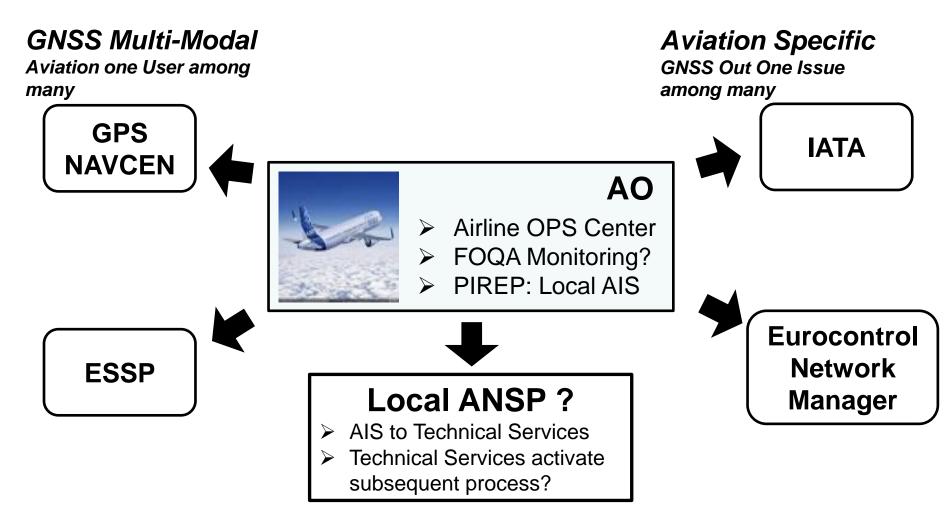
Reported GNSS **Outage Event**

GLOBAL

REGIONAL

Due to Receiver **Problem?**

> Receiver Manufacturers


Avionics Integrators

Civil-Military Coordination, NATO National Defense

GPS OUT Reporting Streams Today

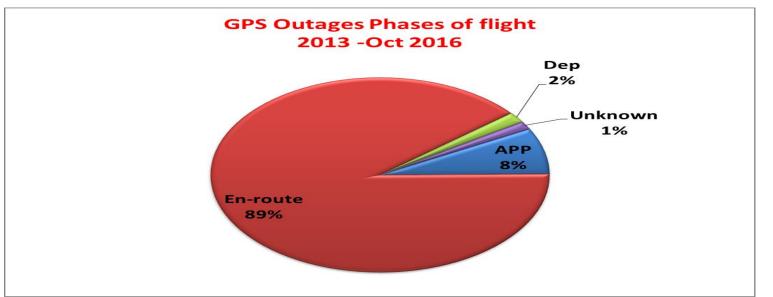
No aggregate vision of events > Incomplete threat picture Resolution depends on awareness of many individuals

Meeting "Stated ATCO Requirement"

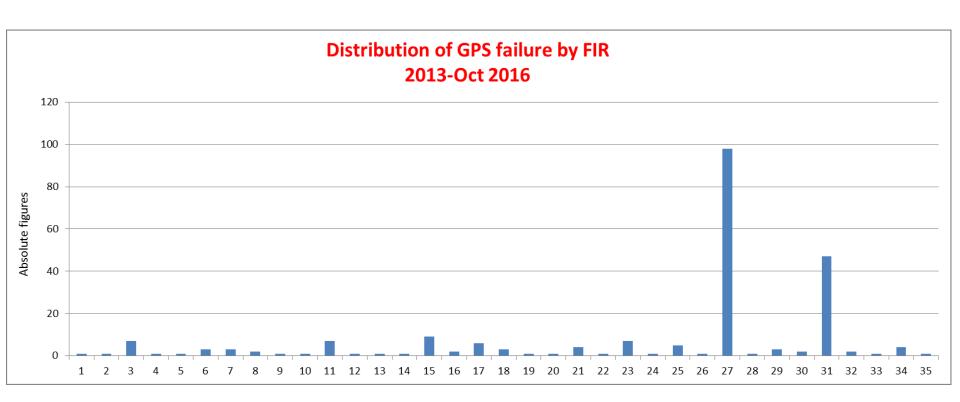
- Budapest GPS Outage Simulations:
 - "Tell me when event starts, when it ends, and how many sectors are affected"
 - No simple technical solutions exist today
 - Allows contingency planning through planner ATCO
- Best to monitor at the impact source: aircraft receiver
 - Currently, only pilot can observe receiver outage
 - Subsequent reporting requires support at regional and global level to determine probable cause (only RFI is local problem)
 - Provides essential risk assessment link on operational impact

ATCO = Air Traffic Control Officer

Implemented: GNSS in EVAIR

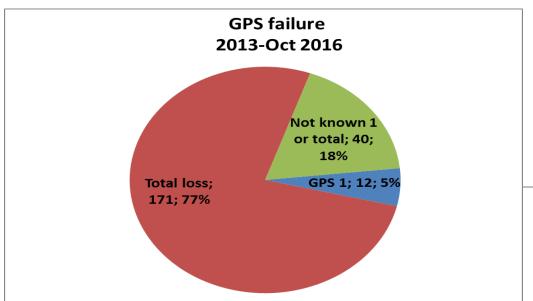

- EVAIR = Eurocontrol Voluntary ATM Incident Reporting
 - Established Safety Process (Confidentiality, Anonymity)
 - 250 Participating Aircraft Operators
 - Coverage: Europe, Middle East, Northern Africa
 - Close cooperation with IATA
 - Part of Network Manager Functions
- Info Bulletin sent beginning 2015 and mid-2016
 - Initial wave of reports received covering 2013/2014
 - Additional reports coming in every few weeks
 - GNSS Outage one issue among many
 - Simple to set up because it is an existing process / framework
 - Working on further awareness materials

GPS Outage Reports in EVAIR


Steady increase especially in 2016

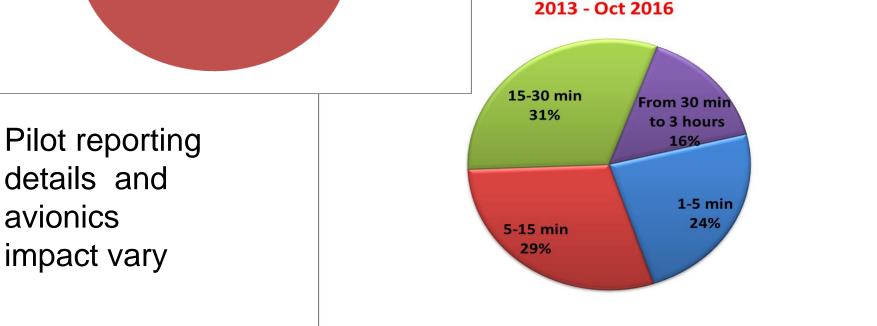
En-Route is most affected flight phase!

Note: GPS OUT Report does NOT necessarily equate to RFI Event!

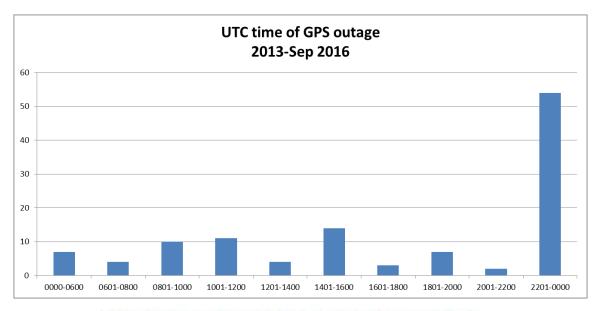


FIR = Flight Information Region

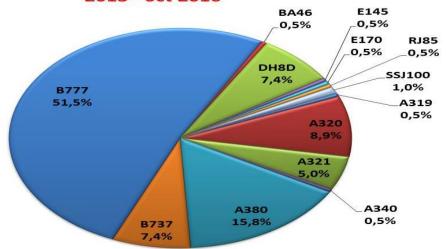
Other recent significant (confirmed) RFI cases: Sydney, Korea, Cairo, Madrid, Ankara, several (smaller cases) in France



GPS Outage Type and Duration

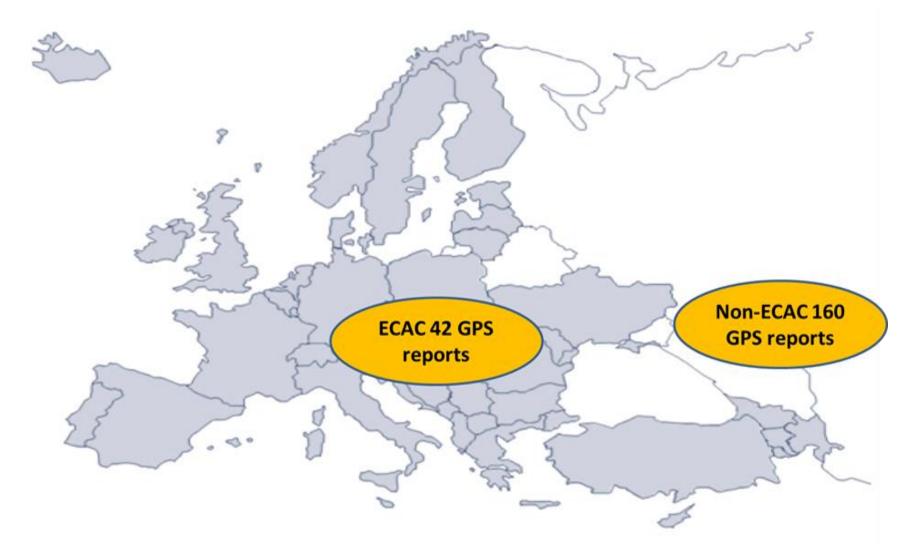

GPS Function normally regained during flight

Duration of GPS outages



GPS Outage: Time and Type

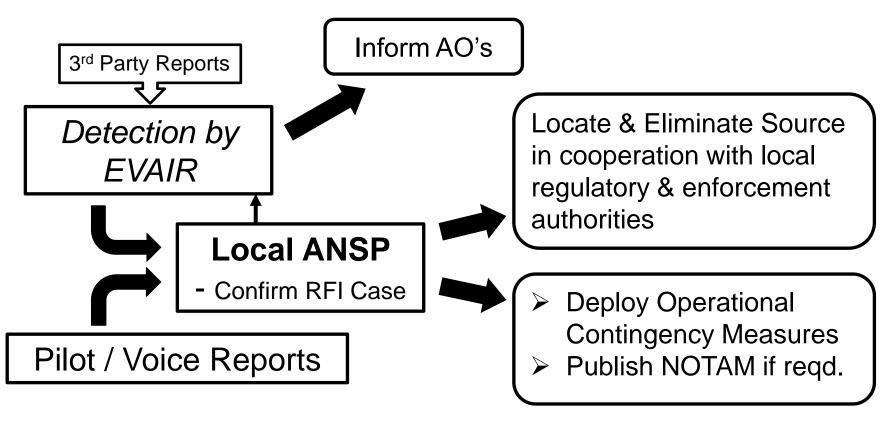
Most Events Occur at Night!


GPS outages Type of the Aircraft involved 2013 - Oct 2016

B777 is most flown type in areas most affected

Geographic Distribution of Events

ECAC = European Civil Aviation Conference


GNSS in EVAIR: Threat Monitoring

- Return to normal operations & impact on both receivers on few aircraft point to RFI with high probability
 - Proves that RFI Outages are REAL but also limited in operational impact currently
- Time-limited, single events do not warrant action
 - Supports strategic objective of threat monitoring
 - Enables setting boundaries on event probability and severity
 - Provides detection if environment changes
- Maintain central repository and statistics of GNSS Outage events
 - Consultation of GNSS service and space weather monitoring reports provide further refinement
 - May also benefit from data from local ground receivers
 - Clarify interfaces for aviation-relevant reporting

EVAIR: Trigger for Detection & Mitigation

- Significant accumulation of events in specific area leads to detection and triggers mitigation action
- Ensuring timely resolution reduces vulnerability / exposure

Interfaces with GNSS System Operators (GSO)

- Currently, mainly GPS NAVCEN and ESSP
 - Multi-constellation: GLONASS, Galileo, Beidou Service Centers
 - Regional SBAS User Support Centers (GBAS with local ANSP)
- Case 1: Strategic Long Term Threat Monitoring
 - Info from GSO to Aviation: Ensure comprehensive view of all aviation-relevant cases
- Case 2: Tactical Mitigation: Actual Significant Outage Event
 - Request from Aviation to GSO: Support in identifying probable cause
 - Benefit from established links (receiver issues, ionosphere, RFI testing)

Further Efforts & Ongoing Developments

- Medium Term
 - Use of ADS-B Position Integrity Category (PIC) Reports
 - Initial studies conducted, various issues
 - Derive independently on ATC side large area RFI event
 - Use of aerial work aircraft to quickly locate RFI sources
 - In cooperation with ground based resources
 - Studied use of Controlled Radiation Pattern Antenna
 - Significant increase in esp. broadband RFI localization sensitivity
- Long Term
 - Nest generation GNSS receivers: detect RFI and provide information to ATC

Summary

ICAO GNSS RFI Mitigation Plan

- Mature and available to States
- Hope to learn from feedback from local implementation

Regional and Global Support Process being put in place

- EVAIR Data and Network Manager Process
- Continuing work on appropriate airborne monitoring capabilities
- Continuing work on increased intervention capabilities
- ATCO training can mitigate until next generation capabilities in place

A lot can be done with relatively simple means

- So far, GNSS RFI threats have not lead to significant risks to aviation operations
- Continued cooperation and development of RFI vulnerability mitigation capabilities can ensure that this remains the case
- To enable full exploitation of Operational GNSS Benefits

Requests to UN ICG

- Support information exchange for aviation with GNSS system operators
 - For both threat monitoring and significant event mitigation
 - Help to identify non-RFI causes
- Forward aviation relevant reports to relevant entities (States, Regional Organizations)
- REF Slide 10 and 21

Back-Up

- Mitigation Plan Details
- Further EVAIR Details
- ADS-B based Monitoring
- CRPA Project Results

Operational Risk Context

- "Loss of Nav" is an event that each aircrew needs to be prepared for at any time
 - Safety Procedures are in place
- Potential of Wide Area GNSS Outage: ATM Context
 - Especially in busy airspace, significant workload risk if many aircraft ask controller for navigation assistance
 - Very busy airspaces tend to be mainly vectored already but move to PBN should reduce this
 - NAV has multiple roles including pilot SA to manage flight
- Reversion Scenarios for PBN
 - Majority of Air Transport Users has DME/DME and INS
 - "Budapest Real Time Simulation"
 - VOR/DME does not provide suitable RNAV capability
 - PBN implementation planning
 - ICAO Annex 10 NAVAIDS Strategy

Threat Types

- Unintentional
 - TV Broadcast Harmonics, Equipment Failure
- Intentional, not directed at aviation
 - Avoiding charges or tracking
- Intentional, directed at aviation
 - Ranges from nuisance to military threat
- Special Types
 - Military Testing
 - Spoofing
- Classification drives mitigation strategies

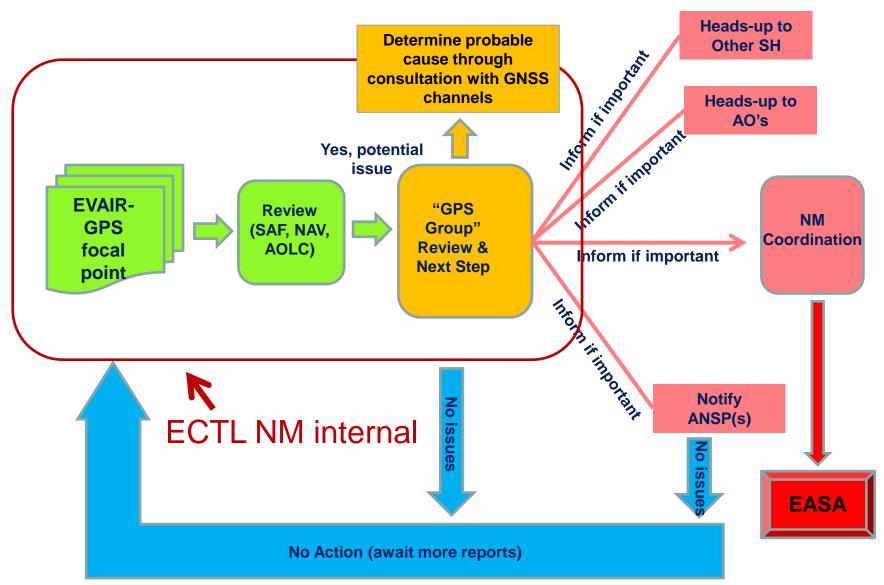
Key Starting Challenges

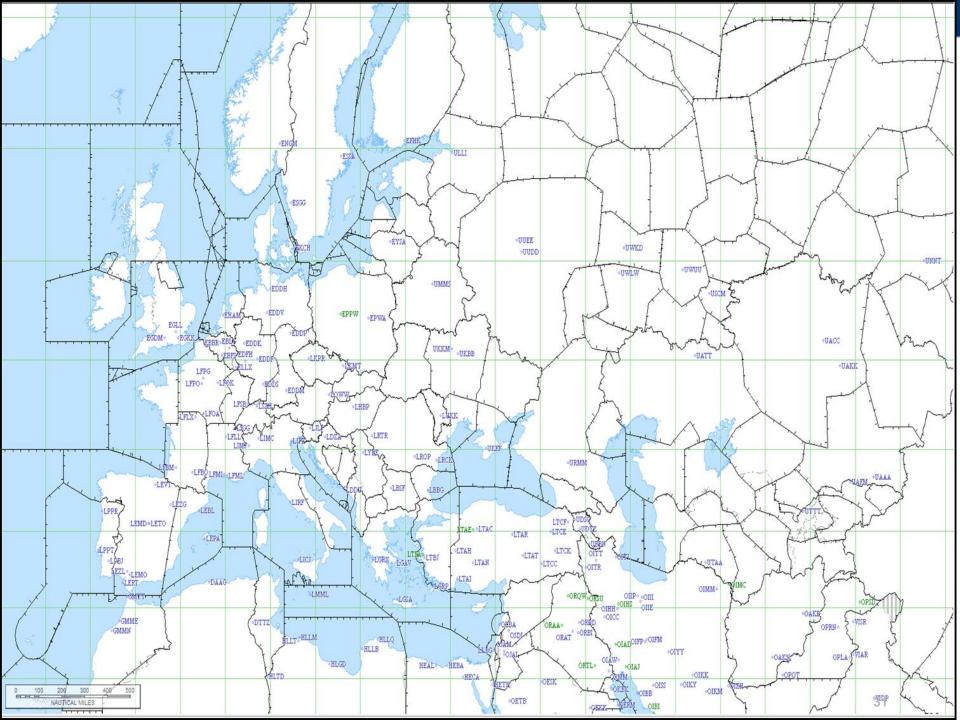
- Observability of RFI Events
 - Lack of reports does not mean that RFI cases don't exist
 - Existing Spectrum Groups receive few reports
 - NOTAM search produced few results
 - Standardized terminology developped
 - Need to know what happens at aircraft!
- Confirmation of RFI Event
 - Difficult to conclude that GNSS outage is result of RFI
 - All other causes of outages are not local ANSP issue
- Both Challenges require State-external support

Generic RFI Mitigation: 4 Steps

Note: applies to all RFI types & scenarios!

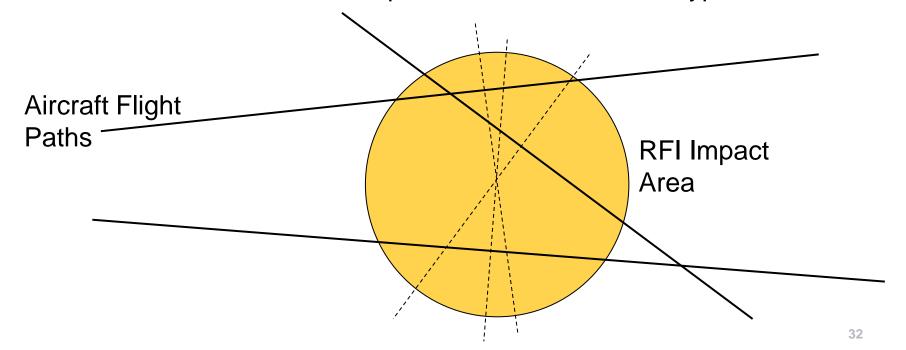
1. **Detection** of RFI


- Ground monitoring networks (aviation & non-aviation)
- Pilot reports: difficulty in cause-effect recognition & subsequent processing
 - Automated in-flight detection would be better?
- Flight Inspection: continuous or on occasion (non-uniform capabilities!)
- Determination of affected area and impact critical to launch response
- 2. Localization of Source: ranges from simple to extremely difficult
 - In cooperation with telecom regulator / affected non-aviation parties
 - Identification of operator


3. Termination of RFI:

- Need clear legal basis and resources for enforcement action
- Cross border issues can be lengthy to resolve
- 4. Application of **Consequences**: fine, publicity future deterrent
 - Update of RFI Mitigation planning as needed

EVAIR GPS Mitigation Information Flow



EVAIR Report Possibilities?

- If precise report of start and stop coordinate of outage event are known, bisector line of potential RFI source location can be derived
 - Assumes omnidirectional RFI source
 - Multiple aircraft reports could lead to localization
 - Requires data support from airline
- Within limits, a minimum power level can also be hypothesized

Medium Term Improvements (1 of 2)

- Not really Pilot's job to determine cause of GPS outage or to report signal in space issues
 - In the age of SWIM, should be automated
 - RFI detection standard feature in many commercial receivers
- CNS Idea: Reporting through ADS-B Figure of Merit
 - Part of ongoing investigations
 - Feasibility demonstration: Australia
 - Demonstrated benefit of air-ground cooperative approach
 - Need to test and build experience in how to integrate information
- Some guessing remains with respect to probable cause
 - Especially for wide-area outage where resolution should be fast
 - Serendipitous capability, but not ideal

ADS-B PIC Use for GNSS Monitoring

ADS-B:

- Different versions of the ADS-B Out MOPS in use
 - Different ways to encode integrity
- Not all aircraft are "proper" ADS-B Out:
 - Version 0 implemented on voluntary basis (along with Mode S mandates, ADS-B only certified on a non-interference basis)
 - Later AMC 20-24 certification only applies to subset of fleet
 - Not necessarily using GNSS as position source
 - Some known avionics issues with version 0

GNSS:

- Different levels of performance
 - Limited information about the position source (SA On/Off, SBAS etc.)

ADS-B based **GNSS** Monitoring: Issues

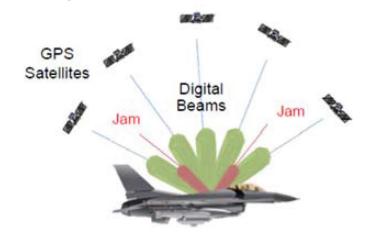
- Difficult Capability to Test without significant RFI Event
 - Study tried to correlate ADS-B Position Integrity Category with events:
 - Known RFI Events
 - Predicted RAIM Outages
 - Iono Events
 - None of the investigated events produced reliable correlation
- But learned about use of ADS-B data
 - Careful filtering of reliable data establish white list?
 - On-board issues usually result in a certain NUCp/NIC behaviour
 - not so common can be filtered out
 - Most of the fleet has stable quality indicators
 - SPI IR implementation of ADS-B Out version 2 (ED-102A / DO-260B) expected to further improve the picture
- Still think that method has promise at least for "massive" RFI events

Sydney Case: ADS-B Lessons Learned

- ADS-B reports key to identifying probable source location: Aerospace Industrial Park
 - "Search" proved sufficient to terminate 3h event
- Most Ground Monitor Stations didn't see RFI
 - Some outages on WAM network, but difficult to locate
 - Need to evaluate line of sight
- Lessons Learned
 - Aircraft with INS didn't lose NAV
 - Contingency procedures worked
 - Some aircraft GPS receivers didn't recover (even on turnaround!)
 - Air Services Australia recommends recording of GPS status on QAR
 - Ground and aircraft based localization must work in complement
 - Implementation simplest if within existing processes & infrastructure

Position Integrity Category

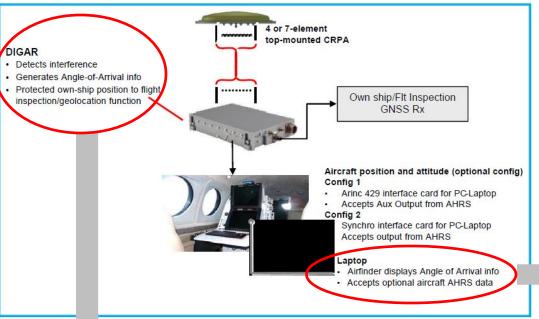
Ground system notation (Asterix) for integrity containment bound encoding


PIC	Integrity Containment Bound	NUCp ED102/DO260	NIC (+ suppl.) DO260A	NIC (+ suppl.'s) ED102A/DO260B		
			_	NIC	A/B	A/C
15	not defined					
14	< 0.004 NM	9	11	11	-	-
13	< 0.013 NM	8	10	10	-	-
12	< 0.04 NM		9	9	-	-
11	< 0.1 NM	7	8	8	-	-
10	< 0.2 NM	6	7	7	-	-
9	< 0.3 NM	-	-	6	0/1	1/0
8	< 0.5 NM	5	6 (+ 0)	6	0/0	-
7	< 0.6 NM	-	6 (+ 1)	6	1/1	0/1
6	< 1.0 NM	4	5	5	-	-
5	< 2.0 NM	3	4	4	-	-
4	< 4.0 NM	-	3	3	-	-
3	< 8.0 NM	-	2	2	-	-
2	< 10.0 NM	2	-	-	-	-
1	< 20.0 NM	1	1	1	-	-
0	No integrity (or > 20.0 NM)	0	0	0	-	-

RFI Localization Developments

Medium Term Improvements (2 of 2)

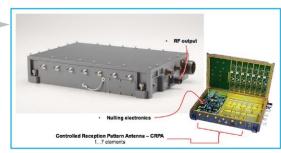
- Controlled Radiation Pattern Antennas CRPA
 - Multi-element GNSS antenna used in defence applications
 - Not an option for airliners, but maybe flight inspection aircraft?
 - Cooperative project with FAA and DSNA
- Project Goals
 - Develop and Demonstrate Concept & Feasibility
 - Increase localization antenna sensitivity
 - Maintain own-ship position during RFI



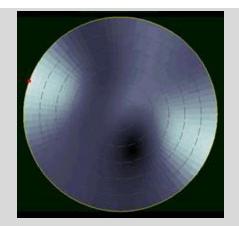
Process

- Directly obtain pointing to RFI source with reduced search time
- Allow efficient deployment of ground capabilities
- Reduce vulnerability by dramatically reducing intervention time

Can we use a "MOTS" Solution?



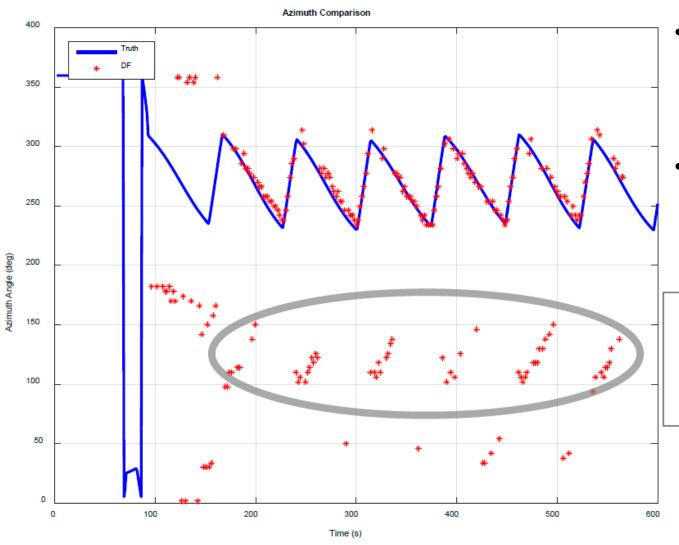
- Rockwell Collins DIGAR: Digital GNSS Anti-jam Receiver
- → Algorithms able to detect wide range of RFI sources (Continuous Wave (CW), swept CW, Broadband, ...)
- → AHRS and Direct Geolocation Processing NOT YET implemented / investigated



Installed system includes:

- CRPA
- Antenna & interface cabling
- DIGAR with GNSS Baseband Processing
- Laptop with DF Software

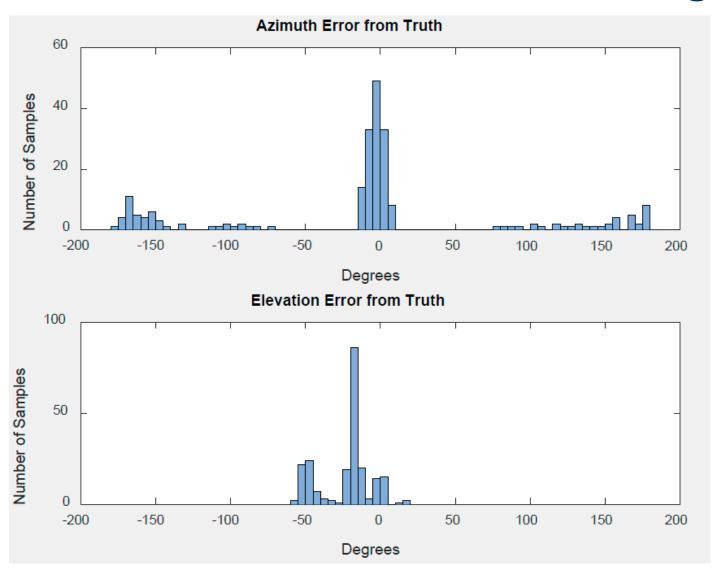
DIGAR


- · White area: possible RFI direction
- Red dot: received power above specified threshold

Jammer Direction Finder Display

Copyright 2015 Rockwell Collins. All rights reserved.

Lab Detection Performance (AZ)



- CW Azimuth
 Performance,
 Ground
 Support Loiter
- Good matches mixed with directional ambiguity

Sympathetic nulls typically move in the opposite direction

Lab Detection Performance Histogram

Test Results

- Trigger and Hunt search strategy not ideal
 - Figure 8 probably best
- Elevation information generally not useful with top mount CRPA
 - Consider extending DF processing to negative elevation angles
- Azimuth pointing better than ±10 degrees
 - Also when subject to ground multipath
 - Banking helps, but not dramatically
 - Detection performance not sensitive to signal type
- Need to develop smoothing filter to eliminate sympathetic nulls
 - Investigate algorithm with variable probability of false detection
- Overall results promising
 - Good match between wavefront simulator and van tests
 - AHRS and RF Calibration requirements acceptable for FI Orgs
 - Flight tests with fully integrated prototype would be useful

FAA Overflight: Technology Comparison

- Spectrum Analyzer and DF-4400 performance depend on correct mode selection and settings suitable to RFI source
- CW detection better with DF-4400, but worse for Broadband
- Bottom-mounted numbers estimated from lab measurements

[dBm]	DF-4400	CRPA System	CRPA System	
Antenna Mounting	Bottom	Тор	Bottom	
Narrowband	-120	-115	-125	
Broadband	-99	-115	-125	

Conclusions of CRPA Project

- FAA and DSNA both prefer bottom-mount option to improve detection performance
 - Loss of ownship position not a significant concern when chasing weak RFI signal sources
 - FI A/C have alternate positioning capabilities
- CRPA-based system has higher detection performance
 - Especially for Broadband signals
 - Most PPD Signals are broadband
 - Estimated 25dB Improvement very significant
 - Not dependent on operator settings
 - Does come at an increased price
- FI Organizations and Industry encouraged to further develop GNSS RFI Geolocation Capabilities
 - Technical, Operational and Human Factors
 - Complementary role in overall RFI Mitigation Plan

Long Term RFI Mitigation Improvements

- A lot can be done with current capabilities at reasonable cost
 - EVAIR is available now
 - Mostly a matter of setting up interfaces and data integration
 - ADS-B FOM Monitoring excellent example of CNS synergy use without introducing additional complexity
 - Still want to reduce guesswork in future equipment
- Next Generation MC GNSS Avionics
 - ICAO NSP requested implementation of reasonable mitigation capabilities from RTCA / EUROCAE
 - Must be careful to not impact continuity of service
 - Detection capability seen as a feasible minimum
 - Permit aircraft to switch to "A-PNT capability"
 - Information must reach ANSP
 - Quick Access Recorder, Flight Operations Quality Monitoring
 - Future: SUR Downlink Aircraft Parameters (DAP) ??