# Evaluation of Low Cost RTK GNSS System

Akhilesh Kumar Karna Avinab Malla Dinesh Manandhar



## Introduction

- Softwel (P) Ltd is a company dedicated in the development of engineering solutions.
- It has developed software for Digital Terrain Modeling for engineering survey works, Software for Road Design, Irrigation, water supply, sewerage and drainage, transmission lines etc and GIS customization work in ArcGIS and QGIS
- There are more than 3,000 clients including few international clients.

## Background

- We have been developing SW Maps, a mobile mapping and field GIS application for Android. It is capable of carrying out general mapping and records features using the inbuilt GPS receivers of Android devices.
- The inbuilt GPS in current mobile devices are not sufficiently precise for most mapping tasks so the app is also capable of connecting to external, RTK capable GNSS receivers via Bluetooth.





- High quality, dual frequency RTK receivers are far more precise in comparison to the inbuilt GPS, but also very expensive.
- These receivers are not affordable for routine works.
- A cost effective solution was needed to provide accurate RTK positioning to mobile devices.

# The Low-Cost Solution

## The Low-Cost Solution

- A low-cost external GNSS receiver was built for mobile devices.
- The device uses a u-blox NEO-M8T receiver and the open-source program RTKLIB running on a Raspberry Pi 3 to provide RTK Positioning to a smartphone.

- The Raspberry Pi was programmed so that it can be set up using commands sent over Bluetooth using a mobile app.
- It uses a cellular modem to connect to an NTRIP caster for correction data.
- The device is powered using a regular power bank used to charge devices over USB.
- The solutions can also be recorded in the device as NMEA sentences.

#### RTKLIB

- RTKLIB is an open source program package for standard and precise positioning with GNSS.
- It consists of a portable library and several command-line based application packages, along with GUI applications for Windows only.
- For this project, RTKLIB was modified so that it can be set up using commands sent over Bluetooth.



# **Components Used**

- u-blox NEO-M8T Module
- Patch Antenna
- Raspberry Pi 3
- Power Bank (20000mAh)
- GPRS Modem



### u-blox NEO-M8T



# Raspberry Pi 3



#### Power and GPRS Modem

Ncell



# The Assembly



## The Mobile Application

- The mobile app "RtkPi" was developed for setting up the GNSS receiver to connect to the NTRIP caster.
- The app connects to the Raspberry Pi over Bluetooth and can set it up as an RTK base station or rover.
- The app also displays current solution, satellite sky plot and SNR graph and can set the device to record NMEA sentences.

| RtkPi                |        |            |                             | RtkPi                                                                                                    |                |            |             |
|----------------------|--------|------------|-----------------------------|----------------------------------------------------------------------------------------------------------|----------------|------------|-------------|
| CONNECTION           | STATUS | SETUP BASE | SETUP ROVER                 | CONNECTION                                                                                               | STATUS         | SETUP BASE | SETUP ROVER |
| Connection<br>Pi-131 |        |            | <ul> <li>CONNECT</li> </ul> | Latitude: 27.692677<br>Longitude: 85.3394<br>Elevation: 1274.781<br>Fix type: RTK Float<br>Satellites: 6 | 6<br>132       |            |             |
|                      |        |            |                             |                                                                                                          | Z              | 30°        |             |
|                      |        |            |                             | 000E M                                                                                                   |                |            | °00°        |
|                      |        |            |                             |                                                                                                          |                | •          |             |
|                      |        |            |                             | 240°                                                                                                     | 210°           | 120.       | 120°        |
|                      |        |            |                             |                                                                                                          | 0              |            |             |
|                      |        |            |                             | 24 - 24                                                                                                  |                |            |             |
|                      |        |            |                             | 350 38                                                                                                   | 12             |            |             |
|                      |        |            |                             | 7 9 16 23 26                                                                                             | 2              |            |             |
|                      |        |            |                             | START RECORDING                                                                                          | STOP RECORDING |            |             |

| RtkPi            |                 |               |             | RtkPi                      |             |            |             |
|------------------|-----------------|---------------|-------------|----------------------------|-------------|------------|-------------|
| CONNE            | CTION STATU     | JS SETUP BASE | SETUP ROVER | CONNECTION                 | STATUS      | SETUP BASE | SETUP ROVER |
| Setup B.<br>Port | ase             |               |             | Setup Rover<br>Serial Port |             |            |             |
| ttyACM0          |                 |               |             | ttyACM0                    |             |            |             |
| Baudrate         |                 |               |             | Baud Rate                  |             |            |             |
| 115200           |                 |               |             | 115200                     |             |            |             |
| NTRIP Se         | ttings          |               |             | NTRIP Settings             |             |            |             |
| Address          | 202.166.206.142 |               |             | Address 202.1              | 166.206.142 |            |             |
| Port             | 5000            |               |             | Port 5000                  | 0           |            |             |
| Mount Point      | t1              |               |             | Mount Point t1             |             |            |             |
| Password         | 1234            |               |             | User USEr                  |             |            |             |
| Latitude         | 27.6925008      |               |             | Password 1234              |             |            |             |
| Longitude        | 85.3394234      |               |             |                            |             |            |             |
| Elevation        | 1275.516        |               |             |                            |             |            |             |
|                  | •               |               |             |                            |             |            |             |
|                  |                 |               |             |                            |             |            |             |
| 0                |                 |               |             |                            |             |            |             |
|                  |                 |               |             |                            |             |            |             |
| START BA         | SE STOP BASE    |               |             | START ROVER                | STOP ROVER  |            |             |

## Cost

| Component                                             | Cost (NRs)* | Cost(USD)* |
|-------------------------------------------------------|-------------|------------|
| u-blox NEO-M8T with patch antenna                     | 8,750       | 80.00      |
| Raspberry Pi 3                                        | 3840        | 35.00      |
| Power Bank (20000mAh)                                 | 3,500       | 32.02      |
| GPRS Modem                                            | 2,000       | 18.30      |
| Miscellaneous (LEDs, resistors, wires)                | 50          | 0.46       |
|                                                       |             |            |
| Total                                                 | 18,140      | 165.78     |
| *Exchange rate 1 USD = NRs. 109.3 as of December 1, 2 | 2016        |            |

### Evaluation of the system

- A base station was established using a PENTAX G3100-R1 (L/L2) receiver).
- The base station was connected to an NTRIP caster to broadcast corrections over the internet.
- The low cost receiver was then set up to connect to the caster as an RTK rover.

- Test were carried out at distance of 10 km from the base station.
- The coordinates obtained from the low-cost receiver was compared to the coordinates obtained by static post processing using another high-end receiver.

| Items                                                 | X (m)      | Y(m)        | Ellipsoid<br>H (m) |
|-------------------------------------------------------|------------|-------------|--------------------|
| Static Processing with L1/L2 (20 minutes observation) | 345661.794 | 3061245.066 | 1273.034           |
| RTK With u-blox<br>(RTK 20 Seconds Average)           | 345662.467 | 3061245.107 | 1275.197           |
| Diff                                                  | 0.673      | 0.041       | 2.163              |
|                                                       |            |             |                    |



Location Map



**Base Station** 





Observation

# Applications

A low-cost RTK GNSS system would unlock many new applications to GNSS that were otherwise impractical due to high cost.

- Asset Mapping including water supply pipelines, sewerage networks, manholes, electrical poles etc.
- Engineering survey works for rural water supply
- High accuracy emergency mapping
- Vehicle tracking.
- Reconnaissance surveying

# Applications

The Low Cost Device can be used in conjunction with VRS system to be developed for Nepal.

## **Future Plans**

- Re-program RTKLIB for Android supporting u-Blox M8T so that Raspberry Pi is not required which will further reduce cost per unit
- Conduct extensive testing and analysis
- Research on integration with VRS

# Thank You