A pilot GNSS timing station in Thailand geodetic network

Thayathip Thongtan National Institute of Metrology (Thailand)

UN/Nepal Workshop on the applications of GNSS 12 – 16 December 2016, Kathmandu

Acknowledgement

- The United Nations Office for Outer Space Affairs
- Survey Department of the Ministry of Land Reform and Management of Nepal
- International Committee on GNSS (ICG)
- NIMT

Outline

- Introduction
- NIMT timing activities
- 2017 Plans
- Conclusion

U D

NIMT

Introduction

GNSS Continuously Operating Reference Stations (CORS) are planned to be built throughout the countries for NRTK, PPP and LBS services.

Plans for GNSS CORS in Thailand by 2018

Organisation	 Department of Lands (DoL) Department of Public Works and Town and Country Planning (DPT) Department of Disaster Prevention and Mitigation (DDPM), Hydro and Agro Informatics Institute (HAII) and NIMT
Number of CORS	142
Baseline	30 km to 50 km
Observed satellite constellations	GPS+GLONASS+Galileo+BDS+(QZSS+SBAS)

NIMT timing activities

- keeping time-link with International Bureau of Standards (BIPM) to maintain the national timescale of UTC(NIMT).
- remote frequency calibration from:
 - GPS pseudorange observations by GPS common-view method.
 - GPS ephemeris is from the broadcast **navigation message**.
 - ITRF2000 (or WGS84) is applied.

NIMT timing activities

GPS timing observation	Accuracy (s/s)	Stability (per day)
UTC-UTC(NIMT)	2.51×10 ⁻¹³	3.46×10 ⁻¹⁴
UTC-GPST	-3.06×10 ⁻¹⁴	4.07×10 ⁻¹⁴
GPST-UTC(NIMT)	2.81×10 ⁻¹³	5.03×10 ⁻¹⁴
UTC-UTC(USNO)	2.35×10 ⁻¹⁴	3.26×10 ⁻¹⁵

NIMT results are based on:

- GPS pseudorange observations only.
 - GPS ephemeris is obtained from the broadcast navigation message.

NIMT timing applications

Application	Output	Customer
Frequency reference	Frequency is traceable to UTC(NIMT) to ±2.1×10 ⁻¹³ baseline is < 1,000 km	Calibration laboratories
Time server	NTP time traceable to $2 \ \mu s$	Telecommunications, government, financial markets
		TAM NI

2017 Plans: establish timing station

Set up two GNSS timing stations

- Equipment and software are:
 - geodetic receiver (Topcon NetG5)
 - choke-ring antenna (Topcon CR-G5)
 - high performance tube caesium frequency standard (5071A-001)
 - Bernese software
- This work is under HAII, DDPM and NIMT collaborations.

Include Active Hydrogen MASER (AHM)

- Improve the short term stability of UTC(NIMT)
- Ensemble clocks of 1 AHM and 3 high performance caesium frequency standards.

2017 Plans: join IGS timing station

Join IGS as a GNSS timing station

- This is to obtain GNSS obtain the computed precise satellite ephemeris, clock offsets, atmospheric delay, station coordinates and clock offsets in ITRF.
- Purposes are for :
 - time comparisons
 - Precise Point Positioning (PPP) determination
 - quality measure improvements

2017 Plans: improve quality measures

Improve NIMT timing quality measures

- Plans to improve the quality are in 3 parts:
 - stability of the timescale by including an active hydrogen maser to the timescales.
 - timing accuracy by determine the error parameters (i.e. receiver internal delay).
 - national time-link accuracy by applying GNSS observations.

Determine integrity of the GNSS timing signals by

- Estimate or model other GNSS observations such as troposphere and ionosphere delay.
- Analyse the reliability (internal and external) of the estimated parameters.

2017 Plans: part of CORS network

NIMT GNSS CORS is part of the GNSS CORS network of six stations under collaborations between ministry of interior and ministry of science.

6	
Water and disaster management	
Flood risk areas along Chaopraya River in central Thailand	
HAII, Bangkok	
1 second and 30 seconds	
Real-Time Kinematic network and post processing services	
Corrections and observation archives	

2017 Plans: part of CORS network

สถาบันมาตรวิทยาแห่งชาติ National Institute of Metrology (Thailand)

U D

NIMT

Conclusion

- The GNSS CORS at NIMT is the only station in Thailand that is connected to the **external frequency standard**. Hence the clock offset is **well-defined in terms of accuracy and stability**. It is **traceable to UTC** timescale.
- The accredited frequency measurement towards UTC(NIMT) is at ±2.1×10⁻¹³ using GPS code observations and baseline is < 1,000 km.
 - NIMT has plans to
 - Set up an GNSS timing station
 - Improve the quality of the national time scale.
 - Join IGS
 - Improve the quality measures at the receiver clock using GNSS signals
 - Define the integrity of GNSS signals at NIMT
 - Be part of Thailand geodetic network for positioning services

Thank you for your kind attentions!

