Augmenting GNSS Precise Point Positioning (PPP) for Improved Performance

Dr Suelynn Choy

School of Science, RMIT University, Australia

United Nations/Nepal Workshop on the Applications of GNSS Kathmandu, Nepal 12 - 16 December 2016

* **Disclaimer:** Any opinions expressed in this presentation are solely the author's.

www.rmit.edu.au

Outline

- 1. Introduction to PPP
- 2. Australian National Positioning Infrastructure
- 3. Augmenting PPP
 - Multi-GNSS PPP, Multi-frequency PPP
 - Augmenting PPP with ionospheric corrections, PPP-RTK
- 4. Summary

PPP: Precise Point Positioning RTK: Real-Time Kinematic

1. Introduction to PPP

Anatomy of PPP

 Precise Point Positioning (PPP) allows a single GNSS receiver user to determine position at the decimetre / centimetre error level in kinematic / static mode using precise satellite orbits and clocks

Precise Point Positioning

International GNSS Service (IGS)

-IGS orbits and satellite clocks

Туре		Accuracy	Latency	Updates	Sample Interval	
Broadcast	orbits	~100 cm	— real time		daily	
	Sat. clocks	~5 ns RMS ~2.5 ns SDev				IGS
Ultra-Rapid (predicted half)	orbits	~5 cm	— real time	at 03, 09, 15, 21 UTC	15 min	$\overline{}$
	Sat. clocks	~3 ns RMS ~1.5 ns SDev				
Ultra-Rapid (observed half)	orbits	~3 cm	— 3 – 9 hours	at 03, 09, 15, 21 UTC	15 min	
	Sat. clocks	~150 ps RMS ~50 ps SDev				
Rapid	orbits	~2.5 cm	— 17 - 41 hours	at 17 UTC daily	15 min	
	Sat. & Stn. clocks	~75 ps RMS ~25 ps SDev			5 min	
Final	orbits	~2.5 cm	— 12 - 18 days	every Thursday	15 min	
	Sat. & Stn. clocks	~75 ps RMS ~20 ps SDev			Sat.: 30s Stn.: 5 min	
Real-time IGS	Orbit	< 10 cm	10-20 secs			
	Clock	0.15 ns				Source: IGS
December 2016 UN/Nepal Workshop on GNSS, Kathmandu Nepal						6

Use and Applications

- Commercial applications:
 - Trimble CentrePoint™ RTX™
 - -NavCom Global StarFire[™] Service
 - -Fugro's Precise (Point) Positioning Service
 - -XP, G2
 - -Veripos Ultra (Ultra²) and APEX (APEX²) Service

PPP is **feasible** for positioning and navigation in **remote areas** or regions of **low GNSS reference stations**

2. Australian National Positioning Infrastructure

Precise GNSS Transforming Australian Industry

Precise satellite positioning has delivered economic benefits to Australian industry through productivity gains and efficient use of resources. In 2012, it was estimated that \$2.3-3.7 billion was added to Australia's GDP and this will rise to \$7.8-13.7 billion by 2020 (Acil Allen, 2013).

Source: Geoscience Australia

How Big is Australia?

GNSS CORS Coverage

Mobile Connectivity

Australian National Positioning Infrastructure

Vision: instantaneous, reliable and fit-for-purpose access to precise positioning and timing information anywhere outdoor and at anytime within Australia.

How Good is a PPP Solution?

Source: Choy, Bisnath and Rizos (2016)

How Good is a PPP Solution?

Source: Choy, Bisnath and Rizos (2016)

3.1 Augmenting PPP: Multi-GNSS, Multifrequency PPP

A Multi-GNSS Future

Visible satellite number (mask angle 30°)

GPS(27)+Glonass(24)+Galileo(30)+BeiDou(35)+QZSS(3)+IRNSS(7)+SBAS(7)

Multi-GNSS PPP

Multi-frequency PPP (GPS L1+L2+L5)

3.2 Augmenting PPP with Local Ionospheric Corrections – PPP-RTK

Local Augmentation for PPP

- Challenge: precise ionospheric corrections are required for rapid convergence
- Global precise ionospheric delay estimations for PPP-RTK are not yet available
- They are impractical for satellite transmission for nationwide coverage
- Using CORS networks to generate a local augmentation to global PPP products:

Case Study in Victoria, Australia

PPP-RTK Results

PPP-AR (red) and PPP-RTK (blue) solutions convergence times to within < 10 cm using the IGS/CNES CLK91 real-time corrections.

La Trobe Valley Coal Mine

Source: Elneser (2016), CRCSI Conference

Dynamic Tractor Results (CLK91 & MADOCA)

PPP-RTK results @ Yallourn Mine, 1 September 2016, 00:00 to 02:10

December 2016

4. Summary

Summary: PPP Scalability

- Broadcast orbits & clocks
 –SPS
- Precise orbits and clocks
 –PPP
- Precise orbits and clocks + hardware delays
 –PPP-AR
- Precise orbits and clocks + hardware delays + local augmentation (e.g ionosphere)
 –PPP-RTK

Source: Collins (2013), PPP Workshop

Precision Agriculture: Tractor Guided by QZSS LEX/L6 PPP Solutions

Source: CRCSI (2015)

Acknowledgements

- United Nations Office for Outer Space Affairs
- Survey Department of the Ministry of Land Reform and Management of Nepal
- International Committee on Global Navigation Satellite Systems
- Cooperative Research Centre for Spatial Information (CRCSI), Australia
- RMIT University, Australia
- Geoscience Australia (GA)
- Land Information New Zealand (LINZ)
- Department of Environment, Land, Water and Planning (DELWP)
- Position Partners Pty Ltd
- Fugro Satellite Positioning Pty Ltd
- Japan Aerospace Exploration Agency (JAXA), Japan
- French Government Space Agency (CNES), France
- International GNSS Services (IGS)

* **Disclaimer:** Any opinions expressed in this presentation are solely the author's and do not necessarily represent those of these organizations listed herein.

Thank you

धन्यवाद Dhanyabad

Contact:

Dr. Suelynn Choy School of Science, RMIT University, Australia Email: <u>suelynn.choy@rmit.edu.au</u>