

International Committee on Global Navigation Satellite Systems

GNSS compared to terrestrial signals (why GNSS is vulnerable)

GNSS signal power

- radio waves disperse energy as they propagate
- satellites are 23,000km away
- signal emitted at about 30W
- signal strength proportional to: ¹/_{distance²}
- at 23,000 km, GNSS signal reduced by a factor of about 10¹⁸!
- Imagine trying to see a
 lightbulb 23,000km away
 - signal levels are below the natural background radiation

Terrestrial signal powers

- mobile phone base station
 - typical transmit power,10-100W
 - signal power reduction depends on range
 - at 10km, signal power reduced by factor of 10^{11}
 - at 1km, reduced by 10^9

compared to the GNSS signal (10¹⁸ reduction) it is over billion times stronger

• mobile phone, typical transmit power, 0.1-1W connected to a cell tower at 1km

– typical signal reduction 10⁹

still over a million times stronger than the GNSS signal!

Expected receiver signal power levels

- GNSS receivers expect to receive and can operate at signal levels even below the natural background radiation level, the "noise floor"
- GNSS receivers need a minimum power level "–130dBm"
 - GNSS receivers designed to work at these low levels
 - provided they are not overloaded by other signals
 - modern GNSS receivers can use even lower levels!
- Mobile phones (eg GSM) expect a minimum "–104dBm"
 - around a thousand times higher than GNSS

ICG International Committee on Global Navigation Satellite S

Consequences of the different levels

- The large difference between GNSS and mobile signal levels make GNSS receivers comparatively more susceptible to interference
 - mobile network devices also have the luxury of being able to raise their power levels in steps to cope with obstructions and poor radio environments - GNSS cannot, the low power level is fixed
- If GNSS signals shared frequencies with mobile systems, they would be swamped by interference
- GNSS reception would not be possible

How do you avoid interference?

- To avoid such interference, the Radio Regulations^{*} separate different types of services (eg terrestrial mobile, satcoms, TV) into different frequency bands
 - eg mobile at 900MHz
 - TV at 600MHz
 - satcoms at 1650MHz
 - GNSS at 1575MHz
- However, when high power services operate in nearby frequencies, interference to GNSS is still possible (covered later)

* the Radio Regulations is treaty text agreed between the 195 member states of the International Telecommunication Union

