

Science of Advanced Materials on the Space Shuttle & the International Space Station – Spin off applications on Earth

Dr. Nurcan Bac
Professor and Head
Chemical Engineering Department
Yeditepe University, Istanbul, Turkey

nbac@yeditepe.edu.tr

Why Grow Advanced Material Crystals in Space?

SCIENTIFIC RATIONAL

Eliminate sedimentation
Diffusion limited growth
Secondary nucleation effects
minimized

Overall effect: crystals with fewer defects

Economic Rational (Zeolites)
Chemical Process Industry's major catalytic material,
Wide range of applications,
Exotic use

ZEOLITE- MOLECULAR SIEVE

Zeolites (more than 50 types)

Alumino silicate crystals

Nanoporous crystal structure.

Some areas of use: - Economic and social impact

- Cat. cracking in petroleum refineries (gasoline production)
- ion exchangers (water treatment, powdered detergents)
- gas or liquid separation processes, petrochem. catalysts
- nanocomposites, antibacterials, hosts for microencapsulation.

Worldwide market over 2.5 billion USD

Categories of Crystals Growth in Space

SOLUTION

Proteins

(Drug Design)

(petrochemicals Fuel cells, Antibacterial agents)

VAPOR Phase

Mercury Cadmium Telluride

 $Hg_{1-x}Cd_xTe$

Electronics

From MELTS

Gallium Arsenide

GaAs (selenium doped)

Mercury Zinc Telluride

Hg_{1-x}Zn_xTe

Cadmium Zinc Telluride

Cd_{1-x}Zn_xTe

Electronics

Where Were These Experiments Held? Columbia Space Shuttle STS-73 USML-2 (United States Microgravity Lab- 2)

ISS - US Lab (Destiny)

Iternational Space Station - US Lab

EXPRESS Rack

EXPRESS Rk 1

EXPRESS Rk 2

EXPRESS Rk

EXPRESS Rk 4

EXPRESS Rk 5

Locker1	Locker5
DCPCG-C (UG) (pwr)	DCPCG-T (UG) (pwr)
Locker2	Locker6
DCPCG-V (UG) (pwr)	
Locker3	117
	Locker7
PCG-STES7 (UG)	CGBA4 (UX)
(pwr)	(pwr)
Locker4	Locker8
PCG-STES8 (UG)	CGBA5 (UX)
(pwr)	(pwr)
Drawer1	Drawer2
SAMS-IFRTS1	
SAMS-IFRIST	SAMS-IFICU (UG)

Locker1	Locker5
ZCG-FU1 (UX)	
	Locker6
Locker3	Locker7
Locker4	Locker8
Drawer1	Drawer2

Locker1	Locker5
Lastras	L l 0
Locker2	Locker6
Locker3	Locker7
Lockers	Locker
Locker4	Locker8
Drawer1	Drawer2

Locker1	Locker5
Locker2	Locker6 MEPS1 (UX)
Locker3	Locker7
ADVASC-GC3 (UX)	MAMS (Sys)
ADVASC-SS1 (UX)	
Drawer1	Drawer2
KU-Rec (Sys)	SAMS-IFRTS2 (Sys)

Locker1	Locker5
Space-DRUMS1 (UX)	Space-DRUMS1 (UX)
Locker2	Locker6
Space-DRUMS1 (UX)	Space-DRUMS1 (UX)
Locker3/4/7/8	
Drawer1	Drawer2
Drawer1 Space-DRUMS1 (UX)	Drawer2 Space-DRUMS1 (UX)

EXpedite **PR**ocessing Experiments on Space Station

Experiments Are Transported to ISS

MPLM at Kennedy Space Center (KSC, Florida - 2002)

MPLM is being transported to ISS

MPLM=Multi Purpose Logistics Module

Facilities

"Expedite the Processing of Experiments to Space Station Rack" (EXPRESS Rack)

FACILITY OBJECTIVE

Provides simple, standard interfaces to accommodate drawer-level, locker, and modular-type payloads.

The EXPRESS Rack concept provides the capability for a simple and shortened integration cycle.

FLIGHT OPERATIONS SUMMARY

Transported in MPLM to Orbit with partial subrack payload complement

Rack transferred to Destiny and installation checkout performed

"Zeolite Crystal Growth Furnace" (ZCG)

Al Sacco, Ph.D.; Nurcan Bac, Ph.D. Center for Advanced Microgravity Materials Processing (CAMMP), Boston

RESEARCH OBJECTIVE

• Use the ISS Microgravity environment to grow larger crystals with improved defect structure for zeolites, or other materials to enhance their adsorption properties and catalytic performance in important chemical processes, electronic device manufacture, and other applications

FLIGHT OPERATIONS SUMMARY

 ZCG is mostly autonomous except crew interaction required for:

Start up

Shutdown

Sample change out (experiment runs last 10-20 days)

Monitoring: Photography and check temperatures at predetermined intervals

Packaging samples for return to Earth

Microgravity

"Dynamically Controlled Protein Crystal Growth" (DCPCG-V/C)

Lawrence DeLucas, Ph.D.; University of Alabama, Birmingham

RESEARCH OBJECTIVE

- Develop an automated crystallization system that provides real-time control of the supersaturation levels and assess the usefulness of dynamic control for improving the success of space-based protein crystal growth experiments
- DCPCG-V uses nitrogen gas to influence the rate of evaporation of the protein solution to induce crystal growth
- Compare microgravity vs. 1-g results in crystal quality, growth rates, movement and distribution, and vapor diffusion equilibration

the CRIM.

ZCG (Zeolite Crystal Growth) FURNACE ON THE SPACE SHUTTLE – Al Sacco Jr. and N. Bac

Specs

- **Power** (heat-up) :150 200 W
- Power (steady state): 90 170 W
- Weight (loaded) : ~ 75 kg

• Samples : 38 autoclaves

ZCG Furnace was lost when Columbia (STS-107) Shuttle burned as it entered the atmosphere 1/2/2003

Space Development - Zeolite X

Single Crystal X-Ray - Zeolite A

SPACE

TERRESTRIAL

Transmission Electron Microscope (TEM) Zeolite Beta- Defect-Free Crystal

Ground

Space

PROTEIN CRYSTAL GROWTH

Commercial Protein

Crystal Growth.

Space grown crystals

become

Benchmarks.

Structures are better

defined

Impact:

DESIGN OF NEW ANTIVIRAL DRUGS

Courtesy of Prof. Larry Delucas , UAB
The Center for Biophysical Sciences and Engineering
(CBSE)

a) Space b) Terrestrial

CONCLUSION –Space Results

STS-73 Columbia Crew

 Large and structurally defect-free zeolites and proteins are grown in space.

These become benchmark crystals.

- AFM, results indicate smooth surface for space grown zeolite crystals with distinct growth planes.
- Knowledge base from space grown products enable us to synthesize them better on earth.

ASTRONAUTS AND COSMONAUTS TRAINED ON THE ZCG EXPERIMENT

Bonnie Dunbar - STS-50 (1992)

Albert Sacco Jr. - STS-73 (1995)

Vladimir Dezhurov - ISS Inc. 3 (2000)

Yuri Oniferenko - ISS Inc. 4 (2001)

Carl Walz - ISS Inc. 4 (2001)

Peggy Whitson - ISS Inc. 5 (2001)

Ken Bowersox - ISS Inc. 6 (2002)

STS – Space Shuttle Columbia flight crew ISS – International Space Station Crew Inc = Increment # on orbit

Applications - Zeolites in Medicine

- Known biological properties
- Long term stability
- Ability to reversibly bind to small molecules
- Size and shape selectivity
- Low cost

Silver Ion, Ag+

- Antibacterial effect known since the ancient times
- Strong antibacterial activity
- High stability
- Very broad spectrum
- Exerts its effect through binding to bacterial DNA and inhibiting the most important metabolic activities of the cell such as transport processes and respiration.
- Metallic silver has only slight antibacterial effect when compared to Ag+.

PU-Zeolite Nanocomposites

- Powder form of zeolites limit their use especially in manufacturing field.
- Zeolites can be incorporated into medical grade polyurethanes (PU)
- Antibacterial effect of Ag+-zeolites may contribute to the efficacy of PU in biomedical applications.

Results – Microbiology

Antibacterial effect of composites

a: Ciprofloxacin b: PU c: PU-cAgBeta d: PU-AgX e: PU-AgA

Kamışoğlu, K., Aksoy, E.A.; Akata, B., Hasırcı N., Baç, N. *J. of Appl. Polym. Sci.*, 110, 2854-2861, 2008.

Application of Zeolites in PEM Fuel Cells

Reactions:

PEMFC

Anode: $H^2 \rightarrow 2H^+ + 2e^-$ Cathode: $\frac{1}{2}O_2 + 2e^- + 2H^+ \rightarrow H_2O$ $\frac{1}{2}O_2 + H_2 \rightarrow H_2O$

DMFC

Anode: $CH_3OH + H_2O \rightarrow CO_2 + 6H^+ + 6e^-$ <u>Cathode: 3/2 O₂ + 6H⁺ + 6e⁻ \rightarrow 3 H₂O</u>

 $\mathrm{CH_3OH} + 3/2 \; \mathrm{O_2} \rightarrow \mathrm{CO_2} + 2 \; \mathrm{H_2O}$

Polymer Electrolyte Fuel Cells (PEMFC) Applications-Anode, Polymer Electrolyte, Cathode

Limitations with current perfluorosulfonic acid membranes (Nafion):

- -Loss of conductivity when dehydrated
- -Low operating temp. (80 C)
- -High cost

Motivation for Elevated Temperature (100°C-200°C) PEM Fuel Cell Operation:

- •Enhanced kinetic rates
- •Lower CO poisoning
- •Improved water and thermal management
- •Alleviate system integration issues

Requirement of New Polymer Electrolyte Membrane for High Performance PEMFC

- •Cheap, high Tg temperature and long durability
- •High proton conductivity at elevated temperature and lower relative humidity

P. Costamagna, S. Srinivasan, *J. Power Sources*, 102 (2001) 242

Effect of inorganic additives on proton conductivity

Bac N. et al. International Hydrogen Energy Conference Istanbul, 13- 15 July 2005

SUMMARY

Knowledge base from space grown advanced materials (zeolites and protein) results in spin-offs for new products for the society. Some of these are:

Antibacterial Zeolites -

New Antiviral drug design (Proteins)
Nanocomposite zeolite-polymer fuel cell
membranes. Portable power, or utilization
of hydrogen energy in the future
Microencapsulation of fragrance in zeolites
for extended release in detergents /
softeners

Thank you for the opportunity

ACKNOWLEDGEMENTS

Astronaut Prof. Al Sacco Jr.
Dr. Juliusz Warzywoda
Dr. Burcu Akata Kurç
Özgür Karahan
Jack Ferraro
Joseph Harpster
Robert Maston

Prof. Inci Eroğlu
Serdar Erkan
Dr. Yılser Devrim
Hülya Erdener
Kübra Kamışoğlu
Erce Sengul
Berker Fıçıcllar