Japanese Satellite Challenge to the Global issues

Takaaki IWASA
Ministry of Education, Culture, Sports,
Science and Technology, Japan (MEXT)

Midori SASAKI
Ministry of the Environment, Japan (MOE)

ALOS program

ALOS "DAICHI"

Advanced Land Observing Satellite

Resolution: 2.5m

- Swarch: 35 to 70km

Recurrent cycle: 46 days

Color

Resolution: 10mSwatch: 70 km

Monochrome

Resolution: 10 to 100mSwatch: 70 to 350km

Objectives:

To achieve further advancement in land observation technologies to date, and to contribute to the creation of maps, observation of regions, <u>facilitate understanding of disaster situations</u>, resource exploration, and other aims.

(Main specifications)

Mass Approx. 4,000kg Power generated Approx. 7kW

Design lifespan Orbit More than 3 years, target of 5 years Sun-synchronous sub-recurrent orbit

(Approx. height of 700km)

Jan 2006 Launched from a H-IIA No.8 rocket Oct 2006 Operation commenced in earnest

May 2011 Operation concluded

The International Charter

 Providing a unified system of space data acquisition and delivery to those affected by natural or man-made disasters

Sentinel Asia

Collaboration between space agencies and disaster management agencies

Bilateral Cooperation (Thailand)

Flood Countermeasures

Maps of flood zone on 19 Nov. 2011 Some areas of Nonthaburi, Pathumthani and Bangkok.

Analyzed by GISTDA obtained by Pi-SAR (JAXA) (The areas denoted in blue represent the estimated flood areas)

Contribution to the issues of climate change and food security

> Forest monitoring:

- Monitoring of illegal logging

> Rice crop:

- Precise monitoring of major rice crop cultivated area and estimation of major rice crop yield including in the rainy season.

Transplanting season ② Growing season

7

Improvement in ALOS-2 (1)

	ALOS	ALOS-2	
Recurrent cycle	46 days	14 days	High Frequency
Observable area	approx. 870km (Right looking)	approx. 2320km (Left & Right looking)	
Spatial Resolution	10m (Stripmap)	1-3m(Spotlight), 3m/6m/10m(Strip map)	High Resolution
Downlink	138Mbps (X- band) & Data Relay Satellite	800Mbps (X-band) & Data Relay Satellite	

Improvement in ALOS-2 (2)

"Daichi" radar image (C)JAXA/METI

ALOS-2 radar image (simulation)

Improvement in ALOS-3

	ALOS	ALOS-3
Frequency (at arbitrary location)	about once every two days	once a day
Observable area	approx. 35km /70km	approx. 50km
Spatial Resolution	2.5m	0.8m
Downlink	240Mbps (Ka-band) 120Mbps (X-band)	• •

ALOS-3 Simulated Image (1)

Tanker run aground (Left: ALOS-3, Right: Daichi)

Scattered cars, etc. as a result of the tsunami (Left: ALOS-3, Right: Daichi)

ALOS-3 Simulated Image (2)

Panchromatic image

(Yokohama, Japan)

ALOS (GSD 2.5m) (Jan 19, 2009 © JAXA)

ALOS-3 (GSD 0.8m)

(Simulated image using airborne image (ADS-40, Dec. 2007 ©Pasco) ¹

Japanese Satellite Challenge to the Global issues

- Update of the GOSAT project -

Brief history of space-based GHG monitoring (CO₂ and CH₄)

- SCIAMACHY on Envisat (ESA): 2002 2012 (10 yrs)
- AIRS on Aqua (NASA): 2002 (more than 10 yrs)
- **TES** on **Aura** (NASA): 2004 (almost 8 yrs)
- IASI on MetOp-A (EUMETSAT): 2007 (5 yrs)
- TANSO on GOSAT (JAXA, NIES, MOE):
 2009 (more than 3 yrs)
 - The first satellite dedicated to monitor GHGs
 - Many researchers in the world are using GOSAT data
 - To retrieve concentrations of CO₂ & CH₄ more accurately
 - > To reduce uncertainty in estimates of CO₂ fluxes

Objectives of the GOSAT Project

- To obtain the global distributions of GHG concentrations (CO₂ and CH₄) and their temporal variations
 - > To visualize changing GHG global distributions
 - To fill out the blanks in the network of ground monitoring stations
- 2. To improve accuracy of the carbon flux (sources and sinks) estimation on a sub-continental scale
- 3. To develop technologies for future GHG observing satellites.

GOSAT observation, Sensors, and Products

GOSAT (launched in January 2009)

TANSO-FTS

(Fourier Transform Spectrometer)

-SWIR reflected on the earth's surface

-TIR radiated from the ground and the

atmosphere

3-day recurrent observations

Solar Radiation

TANSO-CAI

(Cloud and Aerosol Imager)

-UV : 0.38µm

-V : 0.67µm

-NIR : $0.87\mu m$

-SWIR : 1.6µm

-"First Light" images and spectra obtained on 9 Feb 2009

666 km

-First Level 1 products (radiance and spectral) released in Oct 2009

10 km diameter

- -First Level 2 XCO₂ and XCH₄ products released in Feb 2010
- -Level 4A product (sources and sinks) product to be released in 2012

Fact 1: GOSAT has observed globally. [2.5 deg. grid monthly means of XCO₂]

(TANSO-FTS SWIR Level 2 Ver.02.00)

Ex.) June 2009 – May 2010 (12 months)

Fact 2: Institutes and universities in the world have retrieved column CO₂ (XCO₂) using different algorithms.

(Data for April 2010)

(+ : TCCON validation sites)

(by H. Takagi (NIES))

Fact 3: Several teams in the world have validated the retrieved XCO₂ with data obtained by ground-based FTSs and aircraft.

Data validation scheme

Data from ground-based FTS network (TCCON)

Data from aircraft measurement (CONTRAIL Project)

Contribution of satellite data to carbon flux estimation

Plan 1: Monthly CO₂ Flux Estimates (Level 4A product)

64-regional monthly CO₂ fluxes estimated from ground-based network data* and GOSAT XCO₂ retrievals . Results for four months (July 2009, October 2009, January 2010, and April 2010) are presented here.

*GLOBALVIEW-CO2 (2011), Cooperative Atmospheric Data Integration Project - Carbon Dioxide. CD-ROM, NOAA ESRL, Boulder, Colorado (Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW).

(Data between June 2009 and May 2010 will be released in 2012)

(by S. Maksyutov & H. Takagi (NIES))

GOSAT websites

JAXA GOSAT project

NIES GOSAT Project

http://www.jaxa.jp/projects/sat/gosat/index_e.html
http://www.gosat.nies.go.jp/index_e.html

Plan 2: GOSAT-based CO₂ flux Inter-comparison campaign is underway by TransCom participants.

(July 2009) (courtesy of S. Houweling (SRON))

(Preliminary results)

Perspective on future GOSAT missions and international cooperation

Possible contribution of GOSAT series

- Elucidating global carbon cycle through precise observation of CO₂ and CH₄
 - ⇒Improvement in climate change prediction
- Early detection of major changes in climate system
 - ⇒ Identifying changes in global environment
- Monitoring of GHG reduction (mitigation efforts)
 (Incl. REDD+ activities)
 - ⇒ Contribution to climate policy making

Cooperation in global observation

GOSAT-2~ (Japan)

- Establishing a platform for cooperation in data inter-comparison and verification, etc.
- ⇒ Improvement in data reliability and accessibility

CarbonSat (ESA) OCO-2 (NASA)

23

Invitation to the GOSAT seminar at Rio+20

THURSDAY, 21 JUNE 2012 11:30-13:00

Venue: Multipurpose space in the Japan Pavilion in the Parque dos Atletas (Athlete Park)

Co-organized by Japan Aerospace Exploration Agency (JAXA), National Institute of Environmental Studies (NIES), and Ministry of the Environment, Japan (MoE-J)

