

Use of the equatorial orbit for space missions BeppoSAX and AGILE

Paolo Giommi Agenzia Spaziale Italiana

Equatorial Low Earth Orbit (LEO)

500-600 km altitude, inclination <~ 5 deg.

Very good for scientific satellites because of

- Low particle background
- Not strongly affected by SAA (South Atlantic Anomaly)
- Low background modulation by Earth magnetic field

Facilitated the beginning of High Energy Astrophysics HUHURU, SAS2, ARIEL-V, SAS3
Early X-ray and Gamma-ray missions (1970-1975)
Launched from Malindi Kenya

The South Atlantic Anomaly

*Beppo*SAX

Satellite for X-Ray astronomy

Lauched on 30 April 1996 by an Atlas-centaur in an equatorial, nearly circular orbit at 600 km altitude.

> April, 30 1996 – April, 30 2002 6 years of X-ray astronomy Re-entry on April, 30 2003

BeppoSAX, the payload

Dedicated to X-ray astrophysics (0.1 - 200 keV) Rossi prize 1998 for GRB discoveries

The disco

The discovery of Gamma Ray Bursts

- 1967-1973 Vela 4,5,6 satellites: looked for X and gamma rays to monitor compliance with the Geneva Limited Nuclear Test Ban Treaty of 1963 (no nuclear tests in space and atmosphere)
- Discovery of intense flashes of Gamma-rays of cosmic origin: GAMMA RAY BURSTS (GRBs) (Klebesadel et al. 1973; Strong et al 1974)

-Hundreds GRBs discovered from satellite networks through the 80's

No clue on source distance

- -Early models often involved neutron stars
- Remarkably little is known about gamma-ray bursts (Harwit 1984 in "Cosmic Discovery")

GRB970228: the 1st X-ray and Optical afterglow

 Accurate (~1 arcmin) X-ray position led to the identification of a fading optical source from ground based telescopes

(Van Paradijs, et al., 1997)

The AGILE mission

The AGILE mission

- ✓ AGILE is a project of the ASI Scientific Program dedicated to gamma-ray astrophysics
- √The Launch is planned for March 30 2007
- ✓Only mission entirely dedicated to gamma-ray astrophysics (E>30 MeV) in 2007
- √Multi-wavelength follow-up program
- ✓ Small Mission with a Guest Observer Program

The AGILE mission

- Total satellite mass ~ 350 kg (equivalent to a Small Explorer, SMEX - class satellite)
- Scientific Instrument mass: 120 kg (extremely low for a gamma-ray detector)
- · A highly innovative Instrument including:
 two imaging detectors:
 the Gamma-Ray Imaging Detector (GRID)
 made of a Silicon Tracker supported by
 a Mini-Calorimeter (MCAL) and Super-AGILE (SA).

The Gamma-Ray Sky

EGRET 1991-1999 AGILE 2007-2009

GLAST 2008-2013

AGILE Instrument

agenzia spaziale AGILE getting ready for launch

AGILE Satellite (Tortona, Dec. 27, 2006)

AGILE Satellite (IABG, Munich February, 2007)

AGILE Launch

(Planned date: March 30th 2007)

Mission characteristics

• Payload:

• AGILE: 321 kg ±10%

Nominal Orbit:

Circular at altitude: 550 ± 10 km
 Inclination: Nominal 0 deg

• Launch station at Sriharikota (SHAR):

Geodetic Latitude: 13.73 deg Longitude: 80.24 deg

• Launch Azimuth: 100 deg

The Malindi Broglio Space Center.

An ASI facility for BeppoSAX, HETE-2, Swift, AGILE, Simbol-X and other future scientific missions

Broglio Space Center

- Location: close to the Equator on the Kenyan coast
 - Lat. 2,9° S
 - Long. 40,2° E
 - 30 km North of the town of Malindi, near the village of Ngomeni
 - Climate: tropical (rainy season from April to August); allows to launch almost all year

around

Broglio Space Center

- Orbital and suborbital launches for scientific payloads from off-shore platforms;
- Number of Launches: 27 (9 satellites); 100% success;
 - LV: Scout; Nike; SuperARCAS, ASTROBeed
 - First Launch: NIKE APACHE (March 1964)
 - Last Launch: SCOUT SV 206 (San Marco D/L 25 March 1988)
- Platforms located in Ungwana Bay:
 - San Marco (launch) 27,5/91 m; 2500 tons (5000 tons deck capacity)
 - Santa Rita 1 (control) 35/35/30 m;
 - Santa Rita 2 (radar for vehicle tracking and control) 30/21 m;
 - Scope/Micoperi (power generation): 4 250 kVA Diesel Motogenerators.

Conclusions

- Equatorial orbit is particularly good for scientific satellites
- ASI's present and past satellites use equatorial orbit
- Malindi is particularly well placed for equatorial satellites (close to the equator and away from SAA)