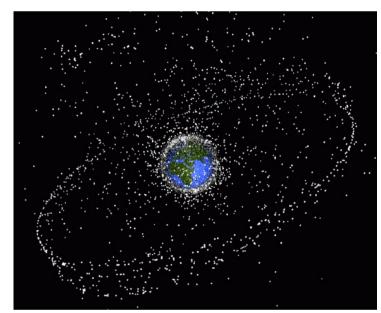
UNCOPUOS STSC

Space Debris Mitigation Activities at ESA

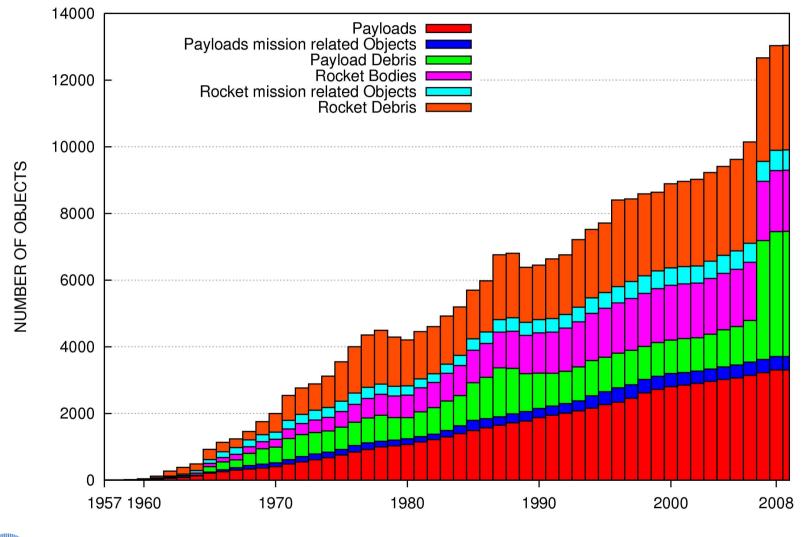
Heiner Klinkrad ESA Space Debris Office

UNCOPUOS STSC, Feb. 2009 p. 1

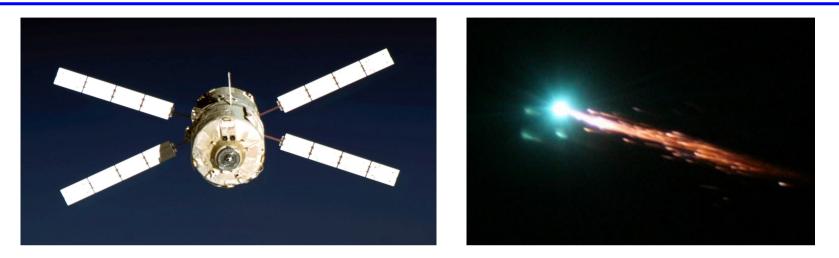

Overview

- the current, observable space debris environment
- the mission of ATV Jules Verne
- O collision avoidance activities for ESA satellites
- Status of objects in the geostationary orbit
- ESA debris mitigation requirements
- European space situational awareness program
- O conclusions

Status of the Space Debris Environment in 2008


- 4,616 launches and 245 on-orbit break-ups led to 12,500 catalog objects of the United States' Space Surveillance Network by Dec. 2008
- □ launches in 2008 ⇒ 67
- mass on orbit ⇒ 6,300 tons
- Catalog orbital distribution: low Earth orbits ⇒ 73%; near-geostationary orbits ⇒ 8%; highly eccentric orbits ⇒ 10%; other orbits (incl. GNSS) ⇒ 9%

- □ catalog composition: satellites ⇒ 25% (only 7% operational), 14% rocket bodies, 8% mission-related objects, and 53% fragments (41% before FengYun 1C ASAT test)
- □ consequences of satellite engagements (as of Dec. 2008): FengYun 1C (11 Jan. 2007) ⇒ 2,318 cataloged fragments in orbit; USA-193 (21 Feb. 2008) ⇒ no cataloged fragments left in orbit


Evolution of the Space Object Population

UNCOPUOS STSC, Feb. 2009 p. 4

The ATV Servicing Mission and Its Re-Entry

- ATV Jules Verne: a 20-ton ESA servicing vehicle for ISS launched from Kourou on Ariane 5 on March 9, 2008; ISS docking on April 3
- on Aug. 27, ATV lowered the orbit of the 240-ton ISS by 1.8 km to avoid a potential collision with a fragment of Cosmos-2421
- on Sep. 5, ATV was de-docked from the ISS; on Sep. 29, ATV was de-orbited into an un-inhabited area of the south Pacific Ocean
- the ATV re-entry (right image) was observed from two aircraft and from the ISS by 23 instruments of 38 researchers; post-flight data analysis will improve the understanding of re-entry phenomena

Collision Avoidance Statistics for 2008

ESA's conjunction event assessment service

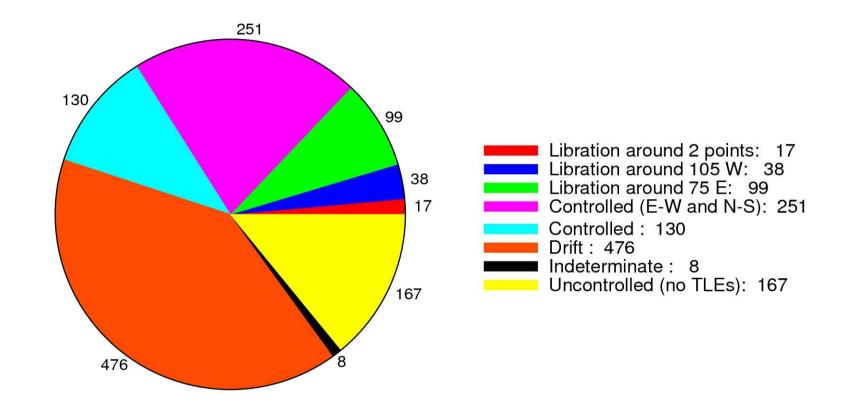
- conjunction analysis and collision avoidance service provided for ERS-2 (2.2 tons) and Envisat (8 tons), both on sun-synchronous, near-polar orbits of 780 km altitude
- conjunction event screening performed with catalog orbit data of the US SSN; forecasts and notifications are issued automatically, each day, for 7 days ahead
- O accepted collision probability: 1 in 1,000 per event (else ⇒ avoidance maneuver)

conjunction event statistics for the year 2008

- 4 events exceeded a collision probability of 1 in 1,000 (all for Envisat);
 18 events exceeded a collision probability of 1 in 10,000 (15 for Envisat; 3 for ERS-2);
 near-miss events: 7 at < 200m, 11 at < 300m, 19 at < 400m, and 27 at < 500m
- conjunction objects: 23% FengYun 1C fragments, 23% spacecraft, 13% orbital stages, 36% fragmentation debris, and 5% mission-related objects
- frequent re-visits: 7 conjunctions of Envisat with Cosmos 841; 10 conjunctions of ERS-2 with a Cosmos-3M 2nd stage
- 4 events required tracking campaigns (4 passes each) to determine improved orbits
- on avoidance maneuver was necessary as result of the improved orbit knowledge
- O the collision of Iridium 33 with Cosmos 2251 on Feb.10, 2009, 16:56 UTC will significantly increase the collision risk for ESA's ERS-2 and Envisat satellites

GEO Satellite Retirements in 2008

7 satellites re-orbited according to IADC Guidelines

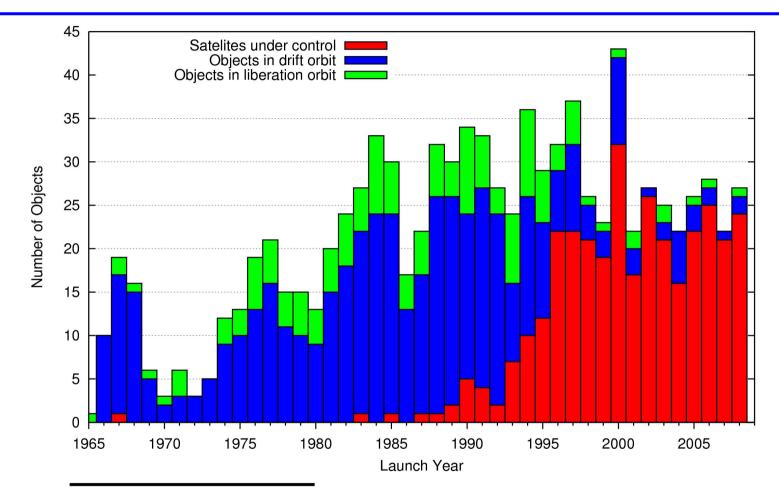

- O Marisat 3 (76-101A, USA) ⇒ disposal orbit 330 km x 1,205 km above GEO
- Optus A3 (87-078A, AUS) ⇒ disposal orbit 350 km x 425 km above GEO
- Optus B1 (92-054A, AUS) ⇒ disposal orbit 275 km x 330 km above GEO
- O Superbird A1 (92-084A, Japan) ⇒ disposal orbit 290 km x 365 km above GEO
- Orion 1 (94-079A, USA) ⇒ disposal orbit 390 km x 570 km above GEO
- O Skynet 4D (98-002A, UK) ⇒ disposal orbit 305 km x 330 km above GEO
- PAS 6B (98-075A, USA) ⇒ disposal orbit 241 km x 393 km above GEO
- □ 1 satellite re-orbited too low
 - O Galaxy 10R (00-002A, USA) ⇒ disposal orbit 170 km x 190 km above GEO

□ 4 satellites left in GEO protected region (GEO ± 200 km)

- O Gorizont 28 (93-069A, Russia) ⇒ left in libration around L1
- O Echostar 2 (96-055A, USA) ⇒ left in libration around L2
- O Gorizont 33 (00-029A, Russia) ⇒ left in libration around L1 and L2
- O Xinnuo 2 (06-048A, PR China) ⇒ left in libration around L1

Orbit Control Status of GEO Objects in 2008

- □ 1,186 objects were in or near the GEO ring in 2008
- □ 12 satellites were retired; 28 satellites / 4 stages were inserted
- □ 381 satellites are controlled (251 of them in E-W and N-S)


End-of-Life Disposal History of GEO Satellites

	'98	'99	'00	'01	'02	'03	'04	'05	'06	'07	'08	Total	
 Left at L₁ 	7	5	3	5	1	_	2	1	2	1	2	29	(18%)
 Left at L₂ 	3	1	1	1	1	1	1	1	1	_	1	12	(7%)
Left at L ₁ /L ₂	_	_	2	_	_	_	_	1	_	_	1	4	(2%)
 Drift orbit (too low) 	6	4	2	6	5	7	5	5	7	1	1	49	(30%)
 Drift orbit (compliant) 	6	5	3	2	4	8	5	11	9	11	7	71	(43%)
Annual Total	22	15	11	14	11	16	13	19	19	13	12	165	(100%)

- compliance with GEO end-of-life re-orbiting guidelines has improved during the past 11 years
- averaged over 11 years, 43% of the retired GEO spacecraft were properly re-orbited, 30% were insufficiently re-orbited, and 27% were abandonned in the GEO ring

Orbit Control Status vs. Age of GEO Satellites

see "Classification of Geosynchronous Objects", Issue 11, Feb.2009 (electronic copies can be requested from <u>Ruediger.Jehn@esa.int</u>)

Other Debris-Associated Activities of ESA

ESA Requirements on Space Debris Mitigation

- ESA/ADMIN/IPOL(2008)2 ⇒ binding set of management, design and operational requirements for new ESA projects as of April 1, 2008
- Description (2004)
- Compliant with IADC Guidelines (Nov. 2002) and UN Guidelines (Jan. 2008)

Space Situational Awareness (SSA) Program

- Nov. 26, 2008 ⇒ Program Declaration subscribed by ESA Member States
- SSA Preparatory Program (2009 2011) ⇒ [1] space surveillance & tracking, [2] governance, data policy & data centers, [3] space weather & near-Earth objects, [4] radar system analyses

 \bigcirc short-term objectives \Rightarrow availability of SSA precursor services by 2012

- O long-term objectives ⇒ provide Europe with an autonomous capability for
 [1] accurate, timely, and complete space situational awareness information,

[2] secure and safe operations of its space activities and services,
[3] protection of its population in case of re-entries and NEO approaches,
[4] verification of compliance with international treaties and codes of conduct to support the peaceful uses of outer space

Conclusions

- the collision of Iridium 33 with Cosmos 2251 on Feb. 10, 2009, is consistent with assessments by researchers that space debris concentrations at some altitudes have reached critical levels
- debris mitigation measures must be consistently applied today to conserve the environment
- debris remediation (active mass removal) will ultimately be required to maintain a safe orbit environment in the long-term future
- European space situational awareness data will contribute to the improvement of safety on orbit and for the population on ground
- **ESA** is committed to play an active role in space debris control

