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Introduction

■ Kessler syndrome

� Identified theoretically by Don Kessler and Burt Cour-Palais in 
1978 1

�Four sources of space debris:

• Mission Related Objects, Break-up, Aging, Collisions

• When the “collision” source becomes larger than the “atmospheric 

cleaning”, natural increase of orbital population

• Critical density varies strongly with the orbit altitudes:

���� Most critical zones in LEO, between 700 and 1100 km, highly 

inclined (including SSO)

�Potential need for Active Debris Removal (ADR)

� International problem

• Sources of debris from every space-faring nations

• No nation shall nor can solve the problem alone

1 D.J. Kessler, B.G. Cour-Palais, Collision frequency of artificial satellites: the creation of a debris belt, JGR 83 (A6) (1978) pp. 2637–2646.
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Introduction

■ Logic of the activities

�Consolidate the need, if any, to perform ADR in addition 
to the proper application of mitigation rules,

� Identify the corresponding system solutions,

� Identify the required technologies and clarify the 
corresponding development constraints,

� Identify some reference scenarios, with solutions precise 
enough to evaluate the programmatic consequences,

�Propose a scheme at international level to initiate such 
operations if, once again, they appear compulsory.
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■ Number of debris to remove

�Studied at worldwide level since more than a decade

�Reference studies from NASA Orbital Debris Office 1

• Need to remove 5 large debris per year to stabilize the environment

• Numerous robustness and sensitivity studies

�Cross-check led by 6 other IADC delegations
• Same hypotheses, model and mitigation

� 100% explosion suppression

� 90% success of end of life measures

• Different tools

• IADC Action Item 27.1

• Coherent results, and confirmation of the need to remove 5 large objects, at least, 
per year

���� “new mitigation measures, such as Active Debris Removal, should be 
considered”.

■ Highest level priority for CNES: 
�Development by Toulouse Space Center of a predictive tool, with different 

modeling, enabling robustness studies

���� Tool MEDEE is now available and will be presented in Darmstadt

1 J.-C. Liou, N.L.Johnson, N.M.Hill, Controlling the growth of future LEO debris populations with active debris removal, Acta Astronautica 66 (2010) pp. 648 - 653

1. High Level Requirements
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1. High Level Requirements

■ Size of Debris
� Removing large debris enables a long term stabilization of 

orbital environment

� Operators’ main concern is short term risk induced by 
small debris

� Examples:

• Risk on Spot 5 (CNES) 1

- Mission loss 0.3% per year

- Main influence of < 5 cm

• Risk on Sentinel 1 (TAS-I draft)  2

- Mission loss 3.2% over lifetime

���� Large integer objects may not be
the only ones to remove:

• Different concerns

• Very different solutions

1 P. Brudieu, B. Lazare, French Policy for Space Sustainability and Perspectives, 16th ISU Symposium, Feb. 21st, 2012
2 R. Destefanis, L. Grassi, Space Debris Vulnerability Assessment of the Sentinel 1LEO S/C, PROTECT Workshop, Mar. 21st, 2012
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1. High Level Requirements

■ Stabilization of environment
� Current recommendations aim at stabilizing the orbital 

environment

���� But do we really want a stabilization ?
• Is the current risk considered acceptable by operators ?

• Could it be increased ? To which level ?

• Should it be decreased ?

• When should we act ? Now ? In 20 years time ?

■ Acceptability of random reentry
� Can ADR operations lead to random reentry of large dangerous 

objects ? 

� Casualty threshold = 10-4 per operation

� By definition, ADR shall be done on large objects ≡ Dangerous

• Random reentry would be illegal according to French Law on Space
Operations

• However, it improves both debris situation and casualty risk

• Action on-going at CNES Inspector General level

• Action to be led within IADC WG4
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2. System architecture options

■ Debris playground
� Definition of an “interesting target”:

• Function of size – mass – orbit density
• Function of the debris population in one given zone in case of multiple 

debris chasing
� Minimization of the mission ∆V
� Minimization of global mission duration

• Could be function of criticality of random reentry:
� Random reentry not acceptable if casualty > 10-4 

� To be confirmed at national level, then at IADC level
� Typical threshold in size: 500 to 1000 kg
� Could be antagonist with finality of ADR
� Only solution with Direct Controlled Reentry are studied today

• Could be function of nature of debris
� Launcher stages pose potentially less problems than Satellites (definition of a 

debris, confidentiality, mechanical robusteness…)

• Not function of country
� Deliberate choice to consider for the operational phase all debris
� International problem, tackled at international level

� Identification of the most interesting zones: 
• Initial sorting identified 10 critical zones
• Refined subdivision into coherent sub-regions 2

1 JC. Liou, The top 10 Questions for Active Debris Removal, #S1.3, 1st European Workshop on ADR, Paris, June 2010
2 P. Couzin, X. Rozer, L. Stripolli, Comparison of Active Debris Removal Mission Architecture, IAC-12-A6.5.5, Naples 2012
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2. System architecture options

■ Strategy for successive debris removal

� Numerous possible schemes:

• Single shot: one chaser, one debris

• Multiple debris: one chaser, several debris

• Multiple debris: one carrier + multiple deorbiting kits, one debris 

per kit

• Multiple debris: multiple chasers in one launch, several debris each

� No obvious solution:

• Cost of the launch →→→→ Dedicated or Piggy-back

• Size of the launcher

• Cost of the chaser “functions” →→→→ Effect of mission rate

• Sizing of the multiple debris chasers →→→→ Global mission ∆V

� Analyses performed by Astrium, TAS-F and Bertin under CNES 

contract

• Results are still differing !
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2. System architecture options

■ Among the most promising solutions: 
• Considered for the Operational phase

� First Generation may show different optimum

• Large launcher with multiple chasers, each delivering multiple kits 1

1 P. Couzin, X. Rozer, L. Stripolli, Comparison of Active Debris Removal Mission Architecture, IAC-12-A6.5.5, Naples 2012
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1 E. Pérot, Active Debris Removal Mission Design for LEO, #479, 4th EUCASS, St Petersbourg July 2011

2. System architecture options

■From CNES Internal Study OTV 1

� Removal of 5 Ariane upper stages

� Autonomous kit achieves capture

� Similar targets

� +/-200 km ∆∆∆∆a ���� +/-36°/yr drift capacity

� Targets visited in increasing order of
inclination ���� cumulated 0.6° ∆∆∆∆i

���� Mission duration depends on launch date

���� Adjust drift allotted ∆∆∆∆V to target distance
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3. ADR High Level Functions

■ Active De-orbiting of a debris requires 5 functions:
� F1: Far Range rendezvous between Chaser and Debris:

• Up to 10 to 1 km from target

• Can be done through absolute navigation

• Already demonstrated and space qualified

� F2: Short Range rendezvous, up to contact
• Never demonstrated (published) yet for objects which are:

� Non cooperative

� Non prepared

� Potentially tumbling

� Potentially physically and optically different from expected

� F3: Mechanical Interfacing between Chaser and Debris
• Never demonstrated (published) yet for a non prepared object

� F4: Control, De-tumbling and Orientation of the debris
• Partially demonstrated in orbit, but Human operations

� F5: De-orbitation
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���� General approach and trade-off (example from TAS-F 1):
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3. ADR High Level Functions

1 TAS-F – MDA – GMV, CNES OTV-1 Study
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3. ADR High Level Functions

■ F2: Short Range rendezvous, up to contact

� Numerous sensors can be considered
• Optical, Mono or Binocular, Lidar / Radar…

• Example from MDA-TASF 1

� No single technology can cover the complete function

1 TAS-F – MDA – GMV, CNES OTV-1 Study
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���� F3: Mechanical interfacing, some examples: 

OSS: clamp inside the target nozzle

DLR: robotic arm DEOS

Astrium UK: harpoon

CNES: deorbiting kit with robotic operations

ESA-Astrium: hook ROGER

Uni. Roma: foam gluing

Astrium: net capture

EPFL: claw

3. ADR High Level Functions
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3. ADR High Level Functions

■ F3: Capture – Mechanical Interfacing

� No reference solution yet

� Solutions without mechanical interface are discarded here:
• Electrical engine beam pressure

• Electrostatic tractor

���� Lead to uncontrolled reentry

� Solutions may impose different modes of deorbiting
• Net, hook… will impose “pulling” the debris 

• Some allow the control of the debris, other don’t

� Among the preferred:
• Net capture

• Harpoon or hook

• Robotic arms

� Trade-off ongoing during the OTV-2 study (AST and TAS)
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3. ADR High Level Functions

■ F4: Control-Detumbling of the debris: 

� Example from MDA 1

� Rendezvous analyses demonstrate:
• A dramatic dependency of the rendezvous sizing to the tumbling rate

• The importance of the rendezvous axis

� Results suggest to assess different rendezvous scenarios, 

associated to different robotic solutions:
• A – RDV along the debris tumbling axis

• B – RDV along the robotic capture axis

• C – Approach perpendicular to the tumbling axis

1 TAS-F – MDA – GMV, CNES OTV-1 Study
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3. ADR High Level Functions

■ F5: Deorbitation: 

� High thrust deorbitation, Controlled reentry

� Rendezvous analyses demonstrate:
• Conventional chemical propulsion

� Solid, Hybrid, Monopropellant, Bi propellant

� Each have drawbacks and advantages

• Potentially most promising: Hybrid propulsion

DeLuca et al. IAC-12-A6.5.8 
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4. Support studies

■ Envisat: 

� One of the highest priorities debris

� Proposal to reorbit above 2000 km:

• First generation
� Would allow a full scale demonstration of most of the functions

� Need to find the cheapest solution possible

• Electrical propulsion
� Derived from Smart 1 (x 4)

� Compatible with a Vega launch

� Long tether (500 to 1000 m)

• Mechanical interfacing with hook on one 

of the “zenit” instruments

• Global mass budget ≅≅≅≅ 820 kg

� Presented in Ref 1

Velocity vector

Earth center

1 C. Bonnal, C. Koppel, 2nd European workshop on ADR, Paris, June 2012
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4. Support studies

■ Stability of the Chaser-Tether-Debris assembly: 
� Towing = Preferred solution today, but very low TRL

� Control laws of the chaser during de-orbiting boost:
� Parameters of tether: length, elasticity, damping

� Initial conditions of Debris: 6 DOF = orientation = angular motion

� Parameters of Chaser: MOI, thrust and variation, initial orientation

� Parameters of tether-debris interface: unbalance

� Acceptance criteria: ∆V amplitude, orientation, dispersions

� Control laws

� Three teams working on the topic in France
� Mines Paris-Tech

� Supelec

� Thales Alenia Space

� Numerous other teams worldwide (ESA, Russia, USA…)

� Results not yet available
���� Dedicated session during upcoming EUCASS in July 2013

??
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5. Conclusions

■ First priority is to consolidate high level requirements: 

� Question today is not yet How, but What and When

� Study of technical solutions:
• Necessary for programmatic evaluations

• Necessary for R&T programs for TRL increase

� Numerous questions have very high priority:
• Legal and insurance framework, ownership, launching state

• Political hurdles: Parallel with military activities

• Financing schemes

• International cooperation framework

■ Recommendation to work on a reference test case

���� Cosmos 3M upper stage could be a good example

� Benchmarking of solutions over same hypotheses

� Initial steps of international cooperation


