

Status of Active Debris Removal (ADR) developments at the Swiss Space Center

Muriel Richard, Benoit Chamot, Volker Gass, Claude Nicollier <u>muriel.richard@epfl.ch</u>

IAF SYMPOSIUM 2013

11 February 2013 Vienna International Centre, Austria

• Questions:

- What is the best architecture (= cheapest?) to remove 5-10 large debris per year ?
- What is the best way to get organised internationally? (not yet answered)
- Considering population of "500 most wanted debris" [R1]:
 - Mostly large rocket bodies
 - 1000 8000 kg
 - Mostly 71°, 81°, 83° and SSO inclinations

[R1] "An active debris removal parametric study for LEO environment remediation", J.-C. Liou, NASA Johnson Space Center, 2 Advances in Space Research 47 (2011) 1865–1876

- In collaboration with MIT (USA, Prof. O. De Weck), we have developed a mission architecture tool that:
 - Considers various mission architectures

 In collaboration with MIT (USA, Prof. O. De ٨ **Debris altitude (km)** Weck), we have developed a mission architecture tool that: Altitude [km] 059 - Considers various mission architectures - Selects which target debris, optimizes order of removal to minimize propulsion needs and mission duration 500 L 98.1 98.2 98.3 98.4 <u>09.5</u> <u>08</u> 6 98.7 00.0 <u>ae</u> a Inclination [deg Debris inclination (deg) Picker Mothership Shuttle O^{T_2} T_2 T_2 OT_4 $\bigcap T_4$ $\bigcap T_4$ T_1 T₁ T_1 \bigcirc Ο O_T O_{T_3} Launch Launch Launch PESC MSSC

- In collaboration with MIT (USA, Prof. O. De Weck), we have developed a mission architecture tool that:
 - Considers various mission architectures
 - Selects which target debris, optimizes order of removal to minimize propulsion needs and mission duration
 - Finds the launch date that maximises number of debris removed per launch

- In collaboration with MIT (USA, Prof. O. De Weck), we have developed a mission architecture tool that:
 - Considers various mission architectures
 - Selects which target debris, optimizes order of removal to minimize propulsion needs and mission duration
 - Finds the launch date that maximises number of debris removed per launch
 - Provides a parametric design the "remover satellite or kit", compares various technologies

Spread in RAAN at launch minimized

- In collaboration with MIT (USA, Prof. O. De Weck), we have developed a mission architecture tool that:
 - Considers various mission architectures
 - Selects which target debris, optimizes order of removal to minimize propulsion needs and mission duration
 - Finds the launch date that maximises number of debris removed per launch
 - Provides a parametric design the "remover satellite or kit", compares various technologies
 - Provides a parametric mission and debris removal campaign cost

First results to be published during 6th European Conference on Space Debris, 22-25 April 2013, Darmstadt, Germany

ADR demonstration opportunity

- Participated in EC FP7 Call SPA.2013.2.3-02: "Security of space assets from in-orbit collisions"
- This call asks for a demonstration mission, which purpose is to perform an in-orbit removal of debris in a low-cost manner
- Consortium coordinator: GMV (Spain)
 - Partners: Univ. Bologna, ALMASpace, Thales Alenia Space, EPFL, TSD, Univ. Roma La Sapienza, Poli Milano, ONERA, D-Orbit, DTM
- Will test and validate:
 - Guidance, Navigation & Control, before and after capture
 - Vision based approach system
 - Multi-capture demos, inc. Robotic and/or Net capture
 - Mission operations concept, autonomy level

EuroCleanSat preliminary configuration (courtesy ALMASpace)

Conceptual robotic approach for illustration purposes (courtesy TASI)

Optical detection of debris

- In collaboration with Uni-Bern Astronomical Institute (Prof. T. Schildkecht), preparing an optical characterisation of SwissCube CubeSat
- AIUB has a long experience in the field of debris observation (mainly in high-altitude orbits, GEO/GTO/MEO)
 - Based on optical observations with the telescopes at the Zimmerwald observatory and in Teneriffe, AIUB developed high precision propagators to predict the position of debris objects, including high area-to-mass ratio objects
 - Has a permanently updated debris catalogue and algorithms to identify and extract debris objects from telescope images
 - AIUB is also trying to identify shape, size and rotation states using light curve analysis.

Optical detection of debris

 In collaboration with Uni-Bern Astronomical Institute (Prof. T. Schildkecht), preparing an optical characterisation of SwissCube CubeSat

Future developments:

- More advanced propagators, identification of debris shapes, rotation rates and spin axis orientation using light curve analysis and direct imaging
- Improved and automated observation technologies
- Debris detection and tracking using the Zimmerwald Satellite Laser Ranging (SLR) station

Interests of AIUB:

- Verify AIUB's orbital determination/observations with on boardmeasurements
- Verify light curve spectra
- Verify on-board observation/tracking techniques (algorithms)
- Have onboard telescope images on ground for comparison.

CleanSpace One Project

- After the launch of SwissCube CubeSat (Sept. 2009), started ADR technology program called "*Clean-mE*"
- Research and development most efficient when targeted to a concrete application
 => Start of *CleanSpace One* project
- The objectives of the CleanSpace One project are to:
 - Increase awareness, responsibility in regard to orbital debris and educate aerospace students
 - Demonstrate technologies related to Orbital Debris Removal
 - De-orbit SwissCube.

CleanSpace One NanoSat

- CleanSpace One nanosat:
 - Based on a CubeSat platform as preliminary assumption
 - Preliminary (Phase 0) design done using CDF
 - Launch ~ 2017
- Critical technologies provided by partner institutions (open to international cooperation). Satellite platform designed by students.
- Operations performed by students in partnership with professional institutions

CleanSpace One conceptual design 12

13

Vision based systems – current work

- With EPFL Prof. J-P. Thiran's laboratory, research developments for one 2-D camera and optical flow
 - Motion reconstruction algorithms
 - Algorithms developed, first iteration
 - Current process: creation of representative images, characterisation of algorithm performances
- Hardware implementation
 - Cameras: have discussions with Space-X and with PhotonFocus
 - Evaluation of various CubeSat based computers

C. Paccolat, Master thesis EPFL July 2012

Capture mechanisms – current work

• Three designs in parallel:

1.Underactuated mechanisms

- Work under/in cooperation with Prof. Lauria, HES-Geneva

- Work under/in cooperation with Prof. H. Shea

3.Compliant mechanisms

- Work in cooperation with F. Campanile, EMPA

Conclusions

- The Swiss Space Center is pursuing mission architecture studies and development of technologies needed for Orbital Debris Removal
- Participation in mission oriented proposals
 - CleanSpace One project in fund raising phase, student team started in September 2012
 - EC FP7 ADR
 - Nanosat demonstrators have three major advantages:
 - Tests and demonstrates key elements for orbital debris removal, focuses the development on something real
 - Relatively cheap demonstration mission, proposes low-cost mission options
 - Continues education in a very motivating field
- Our goal is to help community, fill in technology gaps, and propose low-cost solutions that integrates within international developments