The Chelyabinsk event – what we know one year later

000000000

TEXET

Jiri Borovicka

Astronomical Institute of the Academy of Sciences of the Czech Republic , Ondrejov, Czech Republic

Feb 15, 2013, 3:20 UT

- Chelyabinsk and wide surroundings
- Extremely bright superbolide
- During local sunrise
- Damaging blast wave
- Massive dust trail

Damage by the blast wave

- Many windows broken
 ~ 1600 injured
 - people

 Collapsed roof of a zinc plant

Dust trail in the atmosphere

Hole in ice, Chebarkul lake

- 70 km W of Chelyabinsk
- Diameter 8 m
- Impact observed by local fishermen and caught by a camera from distance
- RUPTLY
- Small meteorite fragments found in ice
- A 650 kg fragment recovered from the lake on October 16

Meteorites under the snow

- South of Chelyabinsk
- Thousands of mostly small meteorites, one big (1,8 kg)

- Totally > 100 kg
 Many other meteorites found in spring, including a 4 kg piece
- Ordinary chondrites, type LL5

Available data

- Videos (~700), including audio tracks
- Seismic records
- Infrasonic records from around the world (CTBTO's International Monitoring System)
- Satellite observations
 - US Government sensors
 - Meteorological satellites
- Recovered meteorites
- Damage on ground

Nature, Nov 14, 2013

LETTER

doi:10.1038/nature12671

The trajectory, structure and origin of the Chelyabinsk asteroidal impactor

Jiří Borovička¹, Pavel Spurný¹, Peter Brown^{2,3}, Paul Wiegert^{2,3}, Pavel Kalenda⁴, David Clark^{2,3} & Lukáš Shrbený¹

LETTER

doi:10.1038/nature12741

A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors

P. G. Brown^{1,2}, J. D. Assink³, L. Astiz⁴, R. Blaauw⁵, M. B. Boslough⁶, J. Borovička⁷, N. Brachet³, D. Brown⁸, M. Campbell-Brown¹, L. Ceranna⁹, W. Cooke¹⁰, C. de Groot-Hedlin⁴, D. P. Drob¹¹, W. Edwards¹², L. G. Evers^{13,14}, M. Garces¹⁵, J. Gill¹, M. Hedlin⁴, A. Kingery¹⁶, G. Laske⁴, A. Le Pichon³, P. Mialle⁸, D. E. Moser⁵, A. Saffer¹⁰, E. Silber¹, P. Smets^{13,14}, R. E. Spalding⁶, P. Spurný⁷, E. Tagliaferri¹⁷, D. Uren¹, R. J. Weryk¹, R. Whitaker¹⁸ & Z. Krzeminski¹

Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery, and Characterization

Olga P. Popova,¹ Peter Jenniskens,^{2,3}* Vacheslav Emel'yanenko,⁴ Anna Kartashova,⁴ Eugeny Biryukov,⁵ Sergey Khaibrakhmanov,⁶ Valery Shuvalov,¹ Yurij Rybnov,¹ Alexandr Dudorov,⁶ Victor I. Grokhovsky,⁷ Dmitry D. Badyukov,⁸ Qing-Zhu Yin,⁹ Peter S. Gural,² Jim Albers,² Mikael Granvik,¹⁰ Läslo G. Evers,^{11,12} Jacob Kuiper,¹¹ Vladimir Kharlamov,¹ Andrey Solovyov,¹³ Yuri S. Rusakov,¹⁴ Stanislav Korotkiy,¹⁵ Ilya Serdyuk,¹⁶ Alexander V. Korochantsev,⁸ Michail Yu. Larionov,⁷ Dmitry Glazachev,¹ Alexander E. Mayer,⁶ Galen Gisler,¹⁷ Sergei V. Gladkovsky,¹⁸ Josh Wimpenny,⁹ Matthew E. Sanborn,⁹ Akane Yamakawa,⁹ Kenneth L. Verosub,⁹ Douglas J. Rowland,¹⁹ Sarah Roeske,⁹ Nicholas W. Botto,⁹ Jon M. Friedrich,^{20,21} Michael E. Zolensky,²² Loan Le,^{23,22} Daniel Ross,^{23,22} Karen Ziegler,²⁴ Tomoki Nakamura,²⁵ Insu Ahn,²⁵ Jong Ik Lee,²⁶ Qin Zhou,^{27,28} Xian-Hua Li,²⁸ Qiu-Li Li,²⁸ Yu Liu,²⁸ Guo-Qiang Tang,²⁸ Takahiro Hiroi,²⁹ Derek Sears,³ Ilya A. Weinstein,⁷ Alexander S. Vokhmintsev,⁷ Alexei V. Ishchenko,⁷ Phillipe Schmitt-Kopplin,^{30,31} Norbert Hertkorn,³⁰ Keisuke Nagao,³² Makiko K. Haba,³² Mutsumi Komatsu,³³ Takashi Mikourbi ³⁴ (the Chelvabinsk Airburst Consortium)

Trajectory parameters

Length of luminous path: 272 km Observed height span: 95.1 – 12.6 km Slope: 18.5° at the beginning 17° at the end Initial velocity: 19.03 ± 0.13 km/s Terminal velocity: 3.2 km/s Duration of the bolide: 16 seconds

Bolide trajectory

Energy and Size

 Energy from infrasonic, seismic, and US Government sensor data: 500 (±100) kt TNT

Initial mass of the asteroid from known energy and speed:

12,000 metric tons

Initial size, using meteorite density (3300 kg/m³):
 19 meters (17 – 20 m)

Shock wave – Cylindrical or Spherical?

- Shock wave causing damage was cylindrical not spherical
- Ray tracing establishes origin height – arrivals are from various heights, not single point
- Secondary, weaker shocks after main arrival are spherical from fragmentation

Brown et al.

Map of glass damage with models of overpressure

7, 230 buildings affected

Popova et al.

Airblast Damage in Chelyabinsk Of >5000 windows examined, ~10% broke due to initial shock 40% of buildings affected Window glass velocity $7 - 9 \, \text{m/s}$ Shock is a few percent atmospheric pressure Zinc factory roof collapse near focusing?

Brown et al.

Local Overpressure Estimates

Injuries

- 1,613 people asked for medical assistance at hospitals, 112 people were hospitalized, 2 in serious condition; no fatalities
 Injuries were from broken glass
 Other inconveniences reported: heat, sunburn, painful eyes, temporal deafness, stress
- No significant damage or injuries from falling meteorites

Popova et al.

Light curve (the brightest part)

Heights of fragmentations

Fragmentation sequence

- First fragmentation at height ~ 45 km under P ~ 0.5 MPa (1% mass loss)
- Large scale disruption (95% mass loss) at 39 – 30 km under P = 1 – 5 MPa
- By 29 km object was 10 20 boulders of sizes 1–3 m
- These boulders break again at 26–22 km under P ~ 10–18 MPa

Normal tensile strength of meteorites is ~ 50 MPa Fractures in the body decreased the bulk strength

Initial extent of the dust trail

- starting at height ~70 km
- diameter 2–3 km between heights 60–25 km
- volume ~600 km³

Within days, the dust circled the globe

Past impactors

Event	Energy (kt TNT*)
Tunguzka (1908)	10 000
Indian Ocean (1963) - unconfirmed	(1 500)
Chelyabinsk (2013)	500
Brazil (1930) - unconfirmed	(100?)
Indonesia (2009)	50
Marshall Islands (1994)	20
Sikhote Alin (1947)	10
Largest nuclear explosion (USSR 196	50 000
Hiroshima bomb (1945)	15

*1 kt TNT = 4,185 ×10¹² J

Brown et al.

Orbits of Chelyabinsk and a 2-km asteroid 86039 (1999 NC43)

Hypothesis

 Recent (<10⁵ yr) collision of 86039 with another asteroid created Chelyabinsk
 Such collision(s) may be the reason of more 10-50 m impactors existing than corresponds to the equilibrium

Why not discovered before impact?

Summary

- Chelyabinsk the first asteroid disaster in (modern) history
- Damage was from the blast wave. If the body were stronger and penetrated deeper intact, the blast wave would be more damaging
- Chelyabinsk demonstrated that 20-m asteroids are dangerous
- Another potential risk misidentification with military attack
- Asteroids of such size maybe more numerous than previously thought

Mitigation of the risk of small asteroids

- Discover asteroid days to weeks before impact
- Compute the impact point. If it is in inhabited area, warn and evacuate people
- ATLAS initiative (Asteroid Terrestrial-Impact Last Alert System) of Univ. of Hawaii – small telescopes, cheap
- But only ~ 60% of sky is accessible from the ground – go to space

Tunguzka (Jun 30, 1908)

Kulik expedition, 1928

Region damaged by the blast wave: 60 x 40 km

comparison with Rome

Sikhote Alin (Feb 12, 1947)

~23 tons of iron meteorites the largest piece 1700 kg the larges crater \varnothing 27 m

Carancas Crater (Peru)

15 Sep 2007 Ø 14 m depth 3 m ordinary chondrite

original meteoroid size 0.9 - 1.7 m only