

Advances in Canada's Contributions to Space Situational Awareness

Dr. David Kendall

Canadian Space Agency

STSC UN COPUOS 13 February 2014

Outline

This presentation will highlight Canada's interest in and contribution to three low-probability situations related to space that would produce significant consequences if they materialised in a negative way, collectively termed **Space Situational Awareness**:

- Near-Earth Objects (NEOs)
- Space Weather
- Space Debris

Near-Earth Objects

- Canada has been actively participating in the UN COPUOS AT-14 activity relating to Near Earth Objects that has stressed enhanced international coordination to deal with potential asteroid threats.
- It strongly supported the formal creation of the International Asteroid Warning Network (IAWN) led by the US as well as the Space Mission Planning Advisory Group (SMPAG) led by ESA.

Near Earth Object Surveillance Satellite NEOSSat

Near Earth Objects Surveillance Satellite

NEOSSat

NESS (CSA)

Near Earth Space Surveillance → NESS

Asteroid, comet and meteor observation

HEOSS (DND-DRDC)

High Earth Orbit Space Surveillance → HEOSS

Satellite and debris tracking

STATUS: NEOSSat microsat check-out on-orbit progressing

730 km Sun-Synchronous Orbit

Engineering test image 1st debris track

Space Surveillance Areas

Space Weather

- Canada has had a long history in the study, observation, monitoring and understanding of space weather and its effects.
- Canada's first satellite Alouette 1 built in Canada and launched in 1962, was designed to study the Earth's ionosphere and to advance knowledge of "Space Weather".

Space Weather Effects

Space Weather

- Space Weather is a constant threat to Canada due to its geographic location.
- One of the most studied space weather events was the March 1989 severe geomagnetic storm that shut down the Hydro-Québec grid affecting 6 million people for 9 hours causing a direct cost of over 2 billion dollars.

Ref.: Extreme space weather: impacts on engineered systems and infrastructure, Royal Academy of Engineering, February 2013

Canada's unique vantage point

CSA supported projects

- GO Canada
- NASA THEMIS
- e-POP on CASSIOPE
- ESA Swarm

THEMIS Mission

Time History of Events and Macroscale Interactions during Substorms

To better understand substorms processes

3 satellites

- 20 ground based observatories
 - Measure Magnetic field
 - All-sky Imagers (high cadence white light)

e-POP on CASSIOPE

- Launched 29 September 2013
- To study near-Earth Space (350-1500 km)
- 8 Instruments from Canada and int'l parners to study ionosphere and plasma outflow
- Interactions with GO Canada instruments

ESA Swarm mission

- Canada provides Electric field instruments
 - Required for precise measurements of the magnetic field
- Launched 22 November 2013
- Canada's contribution will lead to a better understanding of the ionosphere

Natural Resources Canada

- Operates an array of Fluxgate Magnetometers and Riometers throughout Canada
- Operates the Space Weather Forecasting Centre
 - http://spaceweather.ca
- Member of the International Space Environment Service

Space Weather

- Canada is a co-lead of the Expert Group on Space Weather of the UN COPUOS STSC Working Group on the Long-Term Sustainability of Outer Space Activities.
- Canada is charter member and member of the Steering Group of the International Living With a Star (ILWS) program.

Space Debris

Ariane helium tank, Brazil, February 2012

Delta 1 stage, Zimbabwe, July 2013

Space Debris

MMOD Flux VS Diameter

Space Debris

Space Debris

The Problem

RADARSAT-2 is in polar orbit at ~790 km altitude, SCISAT-1 ~650km, MOST ~ 800km, CANX ~600-800km, EV1 817km, EV6 695km, NEOSSAT ~700km, CASSIOPE ~300kmx1500km, RCM ~600km

Missions Supported

- RADARSAT-1
- RADARSAT-2
- SCISAT
- MOST
- CANX-2
- CANX-6
- ExactView EV-1
- ExactView EV-6

- NEOSSAT
- Sapphire
- CASSIOPE
- RAPIDEYE-1 to RAPIDEYE-5
- Coming soon:M3MSAT, RCM, ...

CSA Close Approach Experience

Space Debris Centre of Expertise

- There are several aspects to space debris:
 - the monitoring and measurement of debris;
 - protection against debris;
 - mitigation measures to avoid collision with debris;
 reduction and removal of debris;
 - guidelines to prevent the creation of debris; and, the safe disposal of space assets, all in a context of international cooperation and security.
- Since 2011, Canada has been actively engaged on most of these fronts, building inter alia a unique Canadian expertise in threat assessment and mitigation.

Near Earth Objects Surveillance Satellite

NEOSSat

NESS (CSA)

Near Earth Space Surveillance → NESS

Asteroid, comet and meteor observation

HEOSS (DND-DRDC)

High Earth Orbit Space Surveillance → HEOSS

Satellite and debris tracking

SAPPHIRE

- SAPPHIRE was launched on 25 February 2013
- Launch and Early Orbit Phase (LEOP) Successfully completed 29 May
- Initial Operational Capability (IOC) signed 10 September
- Full Operational Capability (FOC) announced on 22 November 2013 and officially declared a contributing sensor to the U.S. Space Surveillance Network.
- Begins a 5-year operational mission monitoring space objects orbiting between 6,000 and 40,000 km altitude

IADC

• Canada is latest member of International Space Debris Coordination Committee (IADC) (joined in 2010).

Re-Entry Analysis

- Re-entry time and impact location prediction for an uncontrolled one is a difficult task
 - The attitude evolution of the object and its drag coefficient is a significant source of uncertainty
 - Computation of atmospheric density is another source due to modelling and space weather predictability issues
 - A mean error of 20% may still be expected after executing about 16 reentry campaigns to calibrate models
- Inclination gives the path. Location is TBD until a few hours/minutes before impact
- CSA has participated in the last GOCE re-entry campaign led by ESA

Smart Materials/Smart Structures for MMOD Protection

CSA Project with Industry (MPB) and University (Concordia) On Carbon Reinforced Composite Panels with:

•Embedded self-healing resin micro-capsules working in space environment (extreme vacuum and temperature range)

•Embedded optical FBG fibers for MMOD damage

monitoring

ADR based on Operations System

Heritage In Space Robotics

CSA has delivered 3 state-of-the-art robotic systems for operational use in Low Earth Orbit: the STS (US-Shuttle) Canadarm, the ISS Canadarm2 and Dextre.

Demonstrating the following on-orbit capabilities: Assembly, Inspection, Payload handling, Capture and Berthing, Cooperative Servicing, EVA Support, Robotic Servicing, Change-out of On-orbit Replaceable Units

Orbital Debris Remediation Concept Studies

Two CSA funded Space Exploration concept studies examine use of space robotics to contribute to remediation of large debris :

http://www.asc-csa.gc.ca/eng/media/news_releases/2011/1027.asp

Start: October 2011. End: March 2012

Clear Sky Team: MDA, Bristol Aerospace, UTIAS, Cyber & Space Telecom Inc, Mafic

MODEL Team: COMDEV, Neptec, NGC Aerospace Ltd, ESI Automation and Robotics

Space Debris Compendium

The development of a Space Debris **Compendium** listing Space Debris Mitigation Standards adopted by States and International Organisations is a national initiative of Canada and the Czech Republic supported by the German Aerospace Agency (DLR) and ESA for tabling at the COPUOS Legal Subcommittee in March 2014.

Thank you Merci

