# Commercial Human Spaceflight Safety

By

Tommaso Sgobba IAASS http://iaass.space-safety.org/ 17 February, 2014 STSC COPUOS - Vienna



# Introduction

# Growing importance of commercial space

IAASS

.

- Today, referring to all space activities as exploration activities has become meaningless. Instead space should be considered as made of two functional regions: the "**region of space-exploitation**" and the "**region of space-exploration**". ('exploitation' means making productive use, while 'exploration' means, traveling ,over new territory, for adventure, discovery or investigation). The border between the two regions lays currently at the upper end of the geosynchronous orbits (36,000 km).
  - The interests in the space-exploitation region, are mainly commercial and military, while they are scientific in the space exploration region.



# A fading divide

- Several "soft" boundaries between air and space have been defined:
  - 50 Km is the upper limit of atmospheric buoyancy (balloons);
  - 80 Km is the threshold altitude that defines "astronauts" in the US;
    - 100 Km, also known as the "Karman Line", is where aircraft aerodynamic controls become ineffective;
    - 120 Km begins the re-entry threshold for space vehicles; and,
    - 160 Km is the lowest practical operating orbit for satellites and spacecraft.
- Although the Karman-line, the 100 km separation between the field of aeronautics and that of astronautics, has been recognized for the application of national space-related regulations by some countries such as Australia, currently there **is no legally defined boundary mentioned in international aeronautical conventions and space treaties**.





# A fading divide: the benefits

- Important elements of aviation infrastructure and services (air traffic control, communication meteorology) are becoming space-based.
- Vehicles are being developed that will **operate in both domains**.





# A fading divide: the risks

- There are common concerns like space weather, **sharing of airspace during launch and re**entry operations, protection of the atmospheric and orbital environment (space debris).
- A large part of space launch and re-entry operations take place through the international airspace under the ICAO jurisdiction.



# The Shuttle Columbia's aviation close call

- The disintegration during re-entry of the Shuttle Columbia on February 1, 2003 was a watershed moment in the history of re-entry safety. It highlighted the need to establish preplanned **measures to keep air traffic away from falling debris** if a re-entry accident occurs.
- About 100,000 fragments were recovered for about 40% of the original weight.





# Suborbital spaceflight

• Unmanned suborbital flights have been common since the very beginning of the space age. A suborbital flight is a flight beyond 100 kilometers above sea level but in which the vehicle does not attain the speed to escape Earth's gravity field (40,320 kph).



ESA unmanned suborbital rockets -credits: © ESA/G. Dechiara

First suborbital human spaceflights half century ago

 In 1961, Alan Sheppard on a suborbital flight reached 187 km of altitude on board the first Mercury man-rated rocket (Mercury Redstone 3, a rocket with a capsule on top).





- In 1963, NASA test pilot Joseph Walker reached an altitude of **108 km** in an X-15 aircraft, and returned to the runway from which he took off (attached to a B-52 mother ship).
- The commercial human suborbital space vehicles currently in development still basically follow such configurations, plus other two consisting into an airplane with either a rocket engine or jet engine and rocket engine.



# *Company: The Spaceship Company*

# SpaceShipTwo(SS2)

IAASS

| Vehicle   | Winged, hybrid rocket engine,<br>Mach 4                                                                                                  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| Operation | <ul> <li>Air-launched at 15,000m by<br/>jet-powered Scaled Composites<br/>WhiteKnightTwo aircraft</li> <li>horizontal landing</li> </ul> |
| Mission   | Sub-orbital flights, 2 pilots, 6<br>pax                                                                                                  |
| Spaceport | Mojave Spaceport, California                                                                                                             |
| Launches  | 2014, start of commercial                                                                                                                |
|           | operations                                                                                                                               |



Safety certification authority: FAA for public launch/re-entry public

Surcey

# *Company: XCOR*

| Lynx      |                                                                                                   |  |  |  |
|-----------|---------------------------------------------------------------------------------------------------|--|--|--|
| Vehicle   | Winged, 4 LOX-Kerosene rocket engines, Mach 3.5                                                   |  |  |  |
| Operation | Horizontal take off and landing                                                                   |  |  |  |
| Mission   | <ul> <li>Sub-orbital flights, 1 crew, 1</li> <li>pax</li> <li>Small satellites orbital</li> </ul> |  |  |  |
| Spaceport | - Mojave Spaceport, California<br>(USA)<br>- Caribbean Spaceport, Curação                         |  |  |  |
| Launches  | QOLA, start of commercial operations                                                              |  |  |  |

IAASS



Safety certification authority: FAA for public launch/re-entry public

International Association for the Advancement of Space Safety

# Company: Space X

| Dragon    |                                                                                                         |  |  |  |
|-----------|---------------------------------------------------------------------------------------------------------|--|--|--|
| Vehicle   | Capsule                                                                                                 |  |  |  |
| Operation | Ground launched by Falcon 9 rocket                                                                      |  |  |  |
| Payloads  | - Crew (7) orbital (LEO)<br>- Cargo                                                                     |  |  |  |
| Spaceport | <ul> <li>Launched from Cape</li> <li>Canaveral Air Force Station</li> <li>Splashdown landing</li> </ul> |  |  |  |
| Tests     | Drop and abort test end 2013                                                                            |  |  |  |



- NASA for human spaceflight FAA for launch/re-entry

# *Company: Sierra Nevada & Lockheed-Martin*

| Dream Chaser        |                                                       |  |  |  |
|---------------------|-------------------------------------------------------|--|--|--|
| Vehicle             | Winged – Lifting body                                 |  |  |  |
| Launch<br>Operation | Ground launched by Atlas V rocket                     |  |  |  |
| Payloads            | - Crew (2-7) orbital (LEO)<br>- Cargo                 |  |  |  |
| Spaceport           | <ul> <li>Launched from US launch<br/>range</li> </ul> |  |  |  |
| Glide Tests         | - Landing at NASA-KSC<br>October- November 2013       |  |  |  |
| Piloting            | Unmanned or Manned                                    |  |  |  |

IAASS



Safety certification authority: - NASA for human spaceflight

- FAA for launch/re-entry

# *Company: Boeing & Bigelow Aerospace*

| CST 100   |                                                                                                                |  |  |  |
|-----------|----------------------------------------------------------------------------------------------------------------|--|--|--|
| Vehicle   | Capsule                                                                                                        |  |  |  |
| Operation | Ground launched by Atlas V<br>rocket,                                                                          |  |  |  |
| Payloads  | - Crew (7) orbital (LEO)<br>- Mixed crew and cargo                                                             |  |  |  |
| Spaceport | <ul> <li>Launched from LC 41, Cape</li> <li>Canaveral Air Force Station</li> <li>Splashdown landing</li> </ul> |  |  |  |
| Tests     | Subsystems test on going                                                                                       |  |  |  |
|           |                                                                                                                |  |  |  |



Safety certification authority:

- NASA for human spaceflight
- FAA for launch/re-entry

# *Company: Blue Origin*

# New Shepard

IAASS

| Vehicle   | <ul> <li>Capsule powered by High</li> <li>Test</li> <li>Peroxide (HTP) and RP-1</li> <li>kerosene.</li> <li>Propulsion Module, with</li> <li>reusable</li> </ul>                                                                               |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operation | <ul> <li>liquid oxygen, liquid hydrogen</li> <li>Ground launched by rocket-<br/>rocket engines</li> <li>powered Propulsion Module</li> <li>Propulsion Module lands</li> <li>vertically (VTVL)</li> <li>Capsule lands with parachute</li> </ul> |
| Payloads  | Crew (3) suborbital                                                                                                                                                                                                                            |
| Spaceport | - Launched from LC 39A, Cape<br>Canaveral Air Force Station                                                                                                                                                                                    |
| Tests     | Launch, landing and escape<br>systems tests performed in                                                                                                                                                                                       |
|           | 2012                                                                                                                                                                                                                                           |



Safety certification authority: FAA for public launch/re-entry public safety

# *Company: Reaction Engines*

| Skylon    |                                                                                                |  |  |  |
|-----------|------------------------------------------------------------------------------------------------|--|--|--|
| Vehicle   | Winged, 2 SABRE engines mix<br>hydrogen jet and LOX-hydrogen<br>rocket engine, Mach 5,4 as jet |  |  |  |
| Operation | Single-stage-to-orbit, horizontal take off and landing                                         |  |  |  |
| Mission   | <ul> <li>Orbital &amp; sub-orbital flights,</li> <li>Small satellites orbital</li> </ul>       |  |  |  |
| Airport   | TBD                                                                                            |  |  |  |
| Tests     | Flight tests 2020                                                                              |  |  |  |

IAASS



Safety certification authority: UK CAA

# *Company: Swiss Space Systems*

# Swiss Space System (S3)VehicleWinged – lifting bodyOperationAir launched from Airbus A300Mission- Sub-orbital Intercontinental<br/>flights<br/>- Small Satellites OrbitalAirport- Payerne Airport (CH)<br/>- Malaysia<br/>- MoroccoTestsFlight tests 2017

IAASS



Safety certification authority: EASA (TBC)

# *Company: EADS -Astrium*

# Vinci Spaceplane

IAASS

| Vehicle         | Winged, Mach 3, 20 tons<br>Double propulsion: jet engines,<br>cryogenic methane/oxygen<br>rocket engine |
|-----------------|---------------------------------------------------------------------------------------------------------|
| Operation       | Horizontal take off and landing                                                                         |
| Mission         | <ul> <li>Sub-orbital manned, 6 pax, 2 crew</li> </ul>                                                   |
| Airport         | - Small satellites launch<br>TBD                                                                        |
| Developmen<br>t | Studies                                                                                                 |
| Status          |                                                                                                         |



Safety certification authority: EASA

# *Company: Dassault*

|                           | VSH                                                             |      |
|---------------------------|-----------------------------------------------------------------|------|
| Vehicle                   | Winged – lifting body, Mach 3.5<br>Propulsion Lox/Kero, 11 tons | 1000 |
| Launch<br>Operation       | - Air launched<br>- Horizontal landing                          |      |
| Mission                   | Sub-orbital manned, 6 pax                                       |      |
| Airport                   | TBD                                                             |      |
| Developmen<br>t<br>Status | Studies                                                         |      |

IAASS



Safety certification authority: EASA

International Association for the Advancement of Space Safety

# Company: Copenhagen Suborbital

| iychobeepspace I. | 7 | ycho | Dee | pSpa | ace . | <b>11</b> |
|-------------------|---|------|-----|------|-------|-----------|
|-------------------|---|------|-----|------|-------|-----------|

IAASS

| Vehicle               | Capsule                                        |
|-----------------------|------------------------------------------------|
| Launch<br>Operation   | Sea launched by HEAT 1600 rocket               |
| Payloads              | Sub-orbital                                    |
| Spaceport             | TBD                                            |
| Developmen<br>t Tests | On-going, including tests of the escape system |



Safety certification authority: TBD





# Historical safety records

- Capsule configuration The available (statistically significant) safety record for capsule configuration is that of Russian Soyuz (orbital vehicle). As of beginning of 2013 there have been 115 manned Soyuz launches with 4 failures in total: 2 during launch with no casualty (thanks to the activation of the abort systems), and 2 at re-entry with 3 casualties in total.
- Air-launched configuration On a total of 199 flights X-15 flights there were 1 engine failure and 1 engine explosion with damages at landing (no casualty), and 1 crash with 1 casualty.



# Suborbital spaceflight safety target

• The IAASS considers that a quantitative safety target of **1 accident per 10,000 flights** may be achievable in current suborbital vehicle developments by using proven, well understood and reliable rocket propulsion technologies, application of best safety practices from past and current aeronautical and space projects, performance of wide ground and flight testing program, and rigorous quality control program.

# Suborbital vehicles top-risks

| Design                                         | Capsule | Air<br>Iaunche | Rocket<br>propulsio | Winged<br>system |
|------------------------------------------------|---------|----------------|---------------------|------------------|
| Carrier<br>malfunction                         |         | Х              |                     |                  |
| Explosion                                      |         |                | Х                   |                  |
| Launcher                                       | Х       |                |                     |                  |
| Inadvertent<br>release or firing               |         | Х              |                     |                  |
| Loss of                                        | Х       |                |                     | Х                |
| Loss of control at reentry                     |         |                |                     | Х                |
| Parachute system failure                       | Х       |                |                     |                  |
| Crash landing                                  |         |                |                     | Х                |
| Escape system                                  | Х       |                |                     |                  |
| Falling fragments<br>(catastrophic<br>failure) |         |                |                     | Х                |
| Leaving segregated airspace                    | Х       |                |                     | Х                |
| Atmospheric pollution                          |         |                | Х                   |                  |



A space vehicle needs rocket propulsion to travel in vacuum. But a vehicle like a car or an airplane which uses rocket propulsion to accelerate on ground or in air is not a space vehicle! Since WWII there have been several types of (military) planes that have made use of rockets during take-off (RATO).





A person on a space vehicle orbiting Earth will experience weightlessness, but you can experience **weightlessness** also on a free fall or **on an aircraft performing a parabola**. Space agencies usually use aircraft parabolic flights to test equipment and train astronauts.

Most commercial human suborbital systems currently in development are **essentially high-performance aircraft that use rocket propulsion to accelerate in air** (rocket burn-out around an altitude of 60 km) while **in a parabolic flight**.

# Airspace safety considerations

- Rocket powered unmanned and manned systems (see Shuttle) traditionally include a destructive FTS to prevent departure from segregated airspace or flight path in case of malfunctioning. The suborbital winged systems currently in development do not include a FTS. Furthermore, under US law, there are no regulations levied for the safety of passengers and crew, but only for the protection of the uninvolved, public.
- It is IAASS recommendation that "unregulated" suborbital human spaceflight should be treated according to the same safety rationale being adopted for allowing civil UAVs in the airspace (i.e. a number of safety requirements apply in any case).
- In addition, any original aeronautical certification of equipment and systems should be considered invalid due to exposure to vacuum (e,g, jet engines)



# Conclusions: The time to organize space is now!

- Adopt the International Code of Conduct for Space Operations, but separate military Space Situational Awareness (SSA) issues from civil/commercial Space Traffic Management (STM). Define borders and interfaces between military SSA and civil/commercial STM.
- Enlarge national launch authorities mandates (e.g. FAA-AST) to include commercial onorbit space operations licensing, and civil/commercial STM services.
- Work with ICAO to Integrate Air Traffic Management and Space Traffic Management in a single international system
- Launch inter-government cooperation for creating international voluntary space safety standards.



# Acknowledgments

This presentation is based to a large extend on the results of the IAASS Study Working Group "**An ICAO for Space?**" I co-chaired with Prof. Ram Jakhu of the McGill University, Institute of Air and Space Law.

The complete results of the IAASS study are collected in the book "**The Need for an Integrated Regulatory Regime for Aviation and Space**" sponsored by ESPI (European Space Policy Institute), co-edited by R. Jakhu, T. Sgobba and P. Dempsey, and published by Springer in 2011.



# Acknowledgments

This presentation is based to a large extend on the results of the IAASS Study Working Group "**An ICAO for Space?**" I co-chaired with Prof. Ram Jakhu of the McGill University, Institute of Air and Space Law.

The complete results of the IAASS study are collected in the book "**The Need for an Integrated Regulatory Regime for Aviation and Space**" sponsored by ESPI (European Space Policy Institute), co-edited by R. Jakhu, T. Sgobba and P. Dempsey, and published by Springer in 2011.

