

DEPARTMENT OF AEROSPACE SCIENCE AND TECHNOLOGY

The Brazilian Sounding Rocket VSB-30: meeting the Brazilian Space Program and COPUOS objectives

Eduardo Viegas Dalle Lucca

COPUOS

United Nations, Vienna, Austria, 10-21 February 2014

Objective

Introducing the VSB-30 sounding rocket and explaining how this vehicle has been contributing to achieve both the Brazilian Space Program and the the COPUOS objectives.

Overview

> The VSB-30

> Achievements

> Conclusion

VSB-30 Architecture

- ▶ Two-stage (solid propellant motors)
- ▶ Unguided
- ▶ Rail launched
- ▶ Spin stabilized
- ▶ Payload with recovery and service system

VSB-30 Flight Characteristics

- ▶ Payload: 400 kg
- ▶ Payload apogee: 250 ± 20 km
- ▶ Payload ballistic Flight time above 100 km > 360 s
- ▶ Maximum accelaration < 14 g</p>
- ▶ "Booster" impact point > 250 m
- ▶ Payload impact point $< 3\sigma$ (50 km)

VSB-30 Flight Sequence

Brazilian Space Program and COPUOS main objectives

- International cooperation in the peaceful uses of outer space
- Continued research on outer space matters
- Promoting and sharing the benefits of space technology
- Capacity building in space sector
- Expanding partnerships
- Developing human resources
- Developing and using space technology in Brazil

VSB-30: Origin and Objectives

The VSB-30 was developed to:

- ➤ Support Brazilian Sonding Rockets and Microgravity programs;
- ➤ Support European/German Microgravity programs;
- > Promote space activities for global development;
- >Strengthen regional and international cooperation.

The Brazilian Sounding Rockets Program The Sonda series

SONDA I - 1965

SONDA II - 1972

SONDA III - 1976

SONDA IV - 1984

VS-40 - 2003

The Brazilian Sounding Rockets Supporting microgravity programs

VSB-30 Launching Campaigns

	Campaign	Flight Number	Launch Center	Date
1	Cajuana	VSB-30 V01	CLA/ Brazil	Oct 2004
2	Texus 42	VSB-30 V02	Esrange/ Sweden	Dec 2005
3	Texus 43	VSB-30 V03	Esrange/ Sweden	May 2006
4	MICROG1	VSB-30 V04	CLA/ Brazil	Jul 2007
5	Texus 44	VSB-30 V05	Esrange/ Sweden	Feb 2008
6	Texus 45	VSB-30 V06	Esrange/ Sweden	Feb 2008
7	MICROG1A	VSB-30 V07	CLA/ Brazil	Dec 2010
8	Maser 11	VSB-30 V08	Esrange/ Sweden	May 2008
9	Texus 46	VSB-30 V09	Esrange/ Sweden	Nov 2009
10	Texus 47	VSB-30 V10	Esrange/ Sweden	Nov 2009
11	Texus 49	VSB-30 V15	Esrange/ Sweden	Mar 2011
12	Texus 48	VSB-30 V14	Esrange/ Sweden	Sep 2011
13	Maser 12	VSB-30 V16	Esrange/ Sweden	Mar 2012
14	Texus 50	VSB-30 V17	Esrange/ Sweden	Apr 2013

VSB-30 Flight Performance

Displacement of actual impact points

Apogee and Ground Range

VSB-30 Scheduled Campaigns

Launch Date	Project	Vehicle	Launch Site
2015 (TBD)	MICROG2	VSB-30 V11	CLA
May, 2015	HIFIRE 4	VSB-30 V12	Woomera
September, 2014	HIFIRE 7	VSB-30 V13	Andoya
May, 2014	TEXUS 51	VSB-30 V18	Esrange
November, 2014	MAIUS 1	VSB-30 V19	Esrange
June/July, 2014	CRYOFENIX	VSB-30 V20	Esrange
April, 2015	TEXUS 52	VSB-30 V21	Esrange
April, 2015	TEXUS 53	VSB-30 V22	Esrange
April 2015	MASER 13	VSB-30 V23	Esrange
May 2015	MAPHEUS 5	VSB-30 V24	Esrange

The VSB-30 Certification

Type Certification № 001T2009
October 15th, 2009

European Space Agency

VSB-30: National industry participation

Industry: 75%

PROPELLANT PLANT

ACCEPTANCE TESTS

DIMENSIONAL INSPECTION

QUALITY CONTROL

TECHNICAL DOCUMENTATION

INTEGRATION

Microgravity Suborbital Plataform (PSM)

ATMOSFHERIC REENTRY SATELLITE (SARA)

- Orbital and suborbital plataform
- Reentry capability
- •for microgravity experiments
 - •Payload 300 kg
 - •LEO 300 km

MICROSATELLITE LAUNCH VEHICLE (VLM)

- Solid propellant three-stage rocket
 - •Payload microsatellites up to 150 kg
 - •LEO up to 300 km
- •Cooperative development between Germany (DLR) and Brazil (DCTA)

SATELLITE LAUNCH VEHICLE (VLS-1)

- •Payload up to 250 kg
- •LEO up to 700 km

Support Infrastructure

LABORATORIES, MOTOR TEST INSTALATIONS, PROPELLANT PLANT

Support Infrastructure

Launch Centers

Conclusion

The development and use of the VSB-30 has been contributing to achieve both Brazilian Space Program and COPUOS objectives by:

- Carring out activities in outer space for peaceful and constructive purposes and for global development;
- Promoting and sharing the benefits of space technology;
- Strengthening regional and international cooperation;
- Promoting Human Resources development; and
- Enabling Brazil to develop and use space technology.

DEPARTMENT OF AEROSPACE SCIENCE AND TECHNOLOGY

The Brazilian Sounding Rocket VSB-30: meeting Brazilian Space Program and COPUOS objectives

Thank you for your attention.

Cel Eduardo Viegas Dalle Lucca DCTA - São José dos Campos — SP 55 12 3947-6731 (ssp@cta.br)