



# India's Mars Orbiter Mission in Orbit

#### Vinay K Dadhwal India Director, National Remote Sensing Centre (NRSC), INDIAN SPACE RESEARCH ORGANISATION

52<sup>nd</sup> Science & Technology Sub-Committee, UNCOPUOS 3 Feb 2015, Vienna, AUSTRIA







- MOM Mission Objectives
- Spacecraft
- Science Payloads
- Launch & Journey
- Mars Orbit Insertion
- Mars colour images
- Implications







- Design & develop an MARS orbiter with a capability to perform earth bound maneuvers, Martian Transfer and MARS Orbit Insertion after nearly 300 days of travel
- Incorporation of autonomous features in spacecraft
- TECHNOLOGY Design, Plan and Operate Deep Space Communication with orbiter (.ca 400 Million km)
  - Exploration of MARS surface features morphology, topography, mineralogy.
  - Study of constituents of Martian atmosphere, dynamics of upper atmosphere.
- SCIENTIFIC To detect emanation of gaseous constituents from surface/subsurface looking for clues on geologic or biogenic activities



### **Systems and the Challenges**



| System     | Mission specific changes                                                                                                                                                                                         |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structure  | <ul> <li>Heritage: modified 1K bus to suit Launcher.</li> <li>Incorporation of Communication system elements.</li> <li>Maximal use of composite elements.</li> </ul>                                             |
| Mechanisms | • Deployment of solar panel array at low temperature of – 60 deg C                                                                                                                                               |
| Propulsion | <ul> <li>Incorporation of redundancy flow path lines.</li> <li>Restart of 440N engine after 300 days of dormancy.</li> <li>Execution of blow down mode operation during real time mission management.</li> </ul> |
| Thermal    | <ul> <li>Use of passive thermal control elements.</li> <li>Thermal Management of mission at various stages by imparting proper attitude changes.</li> </ul>                                                      |



### **Systems and the Challenges**



| System          | Mission specific changes                                                                                                                                                                                                                                                           |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power           | <ul> <li>Optimised Power generation both at near earth and Martian conditions.</li> <li>Direct Power transfer. (No slip ring assembly)</li> </ul>                                                                                                                                  |
| Communication   | <ul> <li>Higher ranging tone for tracking accuracy improvements and improved receiver sensitivity.</li> <li>Delta DOR for plane of sky measurements.</li> </ul>                                                                                                                    |
| Autonomy        | <ul> <li>Full scale on- board autonomy thro Fault<br/>Detection and Isolation Logic.</li> <li>Development of 22 new software modules,<br/>modification of 42 modules and usage of 19<br/>existing modules.</li> </ul>                                                              |
| Flight Dynamics | <ul> <li>Trajectory generation for all phases of Mission incorporating gravity, atmosphere, solar radiation pressure ,angular momentum desaturation models and relativistic effect due to Sun and atmospheric drag.</li> <li>Orbit determination software improvements.</li> </ul> |



## **Mars Orbiter Spacecraft**





Primary structure in clean room – ready for integration



**Spacecraft integration** 









## Science Payloads (15 kg)



| Payload                                                     | Primary Objective                                                                   |    |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------|----|
| Lyman Alpha<br>Photometer<br>(LAP)                          | Study of Escape processes of<br>Mars upper atmosphere<br>through Deuterium/Hydrogen |    |
| Methane<br>Sensor for<br>MARS (MSM)                         | Detection of Methane presence                                                       |    |
| Martian<br>Exospheric<br>Composition<br>Explorer<br>(MENCA) | Study of the neutral<br>composition of Martian upper<br>atmosphere                  | L. |
| Mars Colour<br>Camera (MCC)                                 | Optical imaging                                                                     |    |
| TIR Imaging<br>Spectrometer<br>(TIS)                        | Map surface composition and<br>mineralogy                                           |    |





MOM Spacecraft getting integrated on PSLV-C25



# LAUNCH – PSLV C25 XL



- <u>Technical Challenges</u>
- Requirement of larger Argument of Perigee (AOP) ranging from 276.4° to 288.6°
- Launch vehicle flight regime was extended to 2560 s (against 1200s for regular PSLV missions)with a long coasting (1580-1800s) before the ignition of the PS4 stage
- The long coasting necessitated the following
- Specific modification and validation of the coast phase guidance algorithm
- On-board battery capacity augmentation





ST 1&2: Ship-borne Terminals S/C: Spacecraft IDSN: Indian Deep Space Network

The ground segment systems form an integrated system supporting both launch phase, and orbital phase of the mission







- IDSN- 32 is the prime Indian deep space station for MOM in addition to JPL DSN stations. The ground segment support continues.
- Validation of IDSN-32 for range, range rate and Delta DOR jointly by ISTRAC and JPL/NASA carried out successfully and a cross support agreement is on the anvil. TIM planned on April 2015.
- International ground stations including JPL DSN stations supported the mission in the non-visible zones. The contingency requirements met by JPL ground segment need a special mention.
- The data processing and archival of science data is being carried out flawlessly by ISSDC.



## **TRANS MARS INJECTION**







## Mars Color Camera : 1<sup>st</sup> Image





19<sup>th</sup> November 2013, 0820 UT 13:50 hrs

Indian Subcontinent imaged at an altitude of 70,000 km above earth with a spatial resolution of about 3.5 km



## **MARS MISSION PROFILE**





## **Mars Orbit Insertion**



Towards Mars

Towards

Earth

Sun

Towards

SHI ISPO

Re-orienting the Spacecraft MOM is reoriented to align the thrust vector- before fining the engines to reduce the velocity.

**Orbit Around Mars** 

Penapsis: 423 km

Apoapsis: 80,000 km Period: 76.8 Earth Hours

#### Getting Into Martian Orbit

#### O In the Shadow of Mars

Because of the Mars-Sun-Earth geometry, the orbit insertion is destined to happen while MOM is in eclipse. MOM enters eclipse 5 minutes before Burn Start.

#### Engine Firing

The Main liquid Engine and eight smaller thrusters fire, imparting braking velocity of 1098.7 m/s.

#### The communication blackout

The radio link between MOM and Ground station gets blocked by Mars and MOM executes all operations autonomously.

#### Resuming Communication

The burn is terminated when the required braking velocity is achieved and MOM is in Martian Orbit. The spacecraft is reoriented to point its Antenna towards Earth to resume communication.

Escape trajectory







#### Major events before MOI

|                                                                                                                                                                                                    | Mars Orbit                  | MOI Epoch              | : 24-09-201            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|------------------------|
| Activity                                                                                                                                                                                           | Date                        | Periapsis<br>Apo-apsis | : 423 km<br>: 80000 km |
| Uploading of commands                                                                                                                                                                              | 14-09-14<br>15-09-14        | Inclination<br>Period  | : 150.0°<br>: 76.8 hr  |
| Verification of uploaded commands                                                                                                                                                                  | 14-09-14<br>15-09-14        |                        |                        |
| Entry into Sphere of Influence of Mars                                                                                                                                                             | 22-09-14                    |                        |                        |
| <ul> <li>Fourth Trajectory correction manoeuver<br/>and test-firing of Main Liquid Engine</li> <li>Duration : 3.968 seconds</li> <li>Fuel consumption: 0.567 kg</li> <li>ΔV : 2.142 m/s</li> </ul> | 22-09-14<br>@1430 Hrs (IST) | Peri-                  |                        |
| Health Monitoring & checks                                                                                                                                                                         | Ongoing                     | Apsis                  | Y                      |
|                                                                                                                                                                                                    |                             |                        | Martian Orbit          |





### Mars – First Image





Mars Orbiter Spacecraft captures its first image of Mars. Taken from a height of 7300 km; with 376 m spatial resolution



### **Sample Images**







The highest volcano in the solar system – the Olympus Mons and the famous Arsia, Pavonis and Ascraeus collinear mons adjacent to Daedalia Planum. Valles Marineris- the longest canyon in the solar system can be seen

Dark region towards south of the cloud formation is Elysium - the second largest volcanic province on Mars Taken using the Mars Color Camera from an altitude of 8449 km, this image has a spatial resolution of 439 m and is centered around Lat: 20.01N, Lon:31.54E



Technological objectives met with still 53 days to go and 37 kg usable propellant left.

Scientific payload Operations fully met.

Deep space mission management successfully executed.

Time, quality, cost and scope met



## Implications



- Enhancing Interest in science
- Explaining Scientific concepts
- Youngsters participation through Social Media

| e H      | Curiosity Rover @ @MarsCuriosity<br>Namaste, @MarsOrbiter! Congratulations to @I<br>interplanetary mission upon achieving Mars orb |                    |
|----------|------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 10       | ISRO's Mars Orbiter 🤣<br>@MarsOrbiter                                                                                              | Sellow             |
| Howo     | dy @MarsCuriosity ? Keep in touch                                                                                                  | n. I'll be around. |
| 10:32 PN | И - 23 Sep 2014                                                                                                                    |                    |
| 024 0    | ETWEETS 5,118 FAVORITES                                                                                                            | 6 12 4             |

#### **Large Appreciation**

- 10 Best TIME Magazine Inventions of 2014
- Space Pioneer Award of US Space Society
- **o NATURE lists Chairman ISRO among Top 10 Scientists**
- o .... many others



http://www.isro.gov.in